
1

Frameworks Generate Domain-Specific
Languages: a Case-study in the Multimedia

Domain
Xavier Amatriain , Telefonica Research, Barcelona, Spain

Pau Arumi , Barcelona Media, Barcelona, Spain

✦

ABSTRACT

We present an approach to software framework development
that includes the generation of domain-specific languages
(DSL) and pattern languages as goals for the process. Our
model is made of three workflows – framework, metamodel,
and patterns – and three phases – inception, construction, and
formalization. The main conclusion is that when developinga
framework we can produce with minimal overhead – almost
as a side-effect – a metamodel with an associated DSL,
and a pattern language. Both outputs will not only help
the framework evolve in the right direction but will also be
valuable in themselves.

In order to illustrate these ideas, we present a case-study in
the multimedia domain. For several years we have been de-
veloping a multimedia framework. The process has produced
a full-fledged domain-specific metamodel for the multimedia
domain, with an associated DSL, and a pattern language.

Index Terms —D.2.11.b Domain-specific architectures D.1.7 Visual Pro-
gramming D.2.18.a Life cycle D.2.2.a CASE

1 INTRODUCTION

The benefits of modeling languages are well-established in
engineering. The basic idea is to come up with a set of
commonly accepted concepts, notations, and rules in order
to better express problems and solutions. This way we are
mimicking the flexibility of a natural language in which a
vocabulary, syntax, and grammar allows the expression of
complex ideas by combining atomic semantic and functional
units.

UML filled a gap in Software Engineering by standardizing
a generic modeling language. The existence of such a flexible
and general-purpose modeling language is good enough in
many cases. In others, however, we would prefer to have a
more tailored and specialized tool, even if that means com-
promising flexibility and genericity. Furthermore, the generic
UML is sometimes distant from the concepts and tools used in
some particular domains. Having domain experts adopt UML
is not always the best solution: we would like our generic
Software Engineering tools and concepts to adapt to these
particular domains.

Domain-specific languages (DSL) aim at solving these
issues by offering a comprehensive modeling language tailored
to a particular domain. General modeling techniques and
practices are combined with a thorough domain analysis. The
result is a subset or subclass of those general techniques, tools
and practices that better fit the particular application domain.

DSLs, as with any language, are made of a vocabulary,
a grammar, and a syntax. The vocabulary, and the grammar
and syntax at the abstract level, are provided by an associated
metamodel. But the concrete syntax will depend on the way
the particular DSL is implemented –e.g.whether it is a visual
or textual-based DSL. In other words, a given metamodel,
which includes every component of a DSL except for its
concrete syntax, might be implemented or realized through
different concrete syntaxes.

There are two common approaches to define a DSL: Start
from the general-purpose UML and constrain and refine its
usage to better embrace domain specificities; or use a generic
metamodeling tool in order to define a new modeling language
that relates to domain modeling concepts (see Mernik’s et al.
survey [26] for more information on standard approaches to
DSL design).

Here, we present a different approach that consists of
integrating the definition of a DSL in the development process
of a software framework. Rather than proposing this as a
general-purpose approach to defining a DSL, our goal is to
highlight that both ideas are so intimately related that when
developing a domain framework using recorded best practices,
it is possible to obtain a full-fledged DSL with very little added
overhead: frameworks generate domain-specific languages.
The resulting DSL will fall in the category ofembeddedDSLs.
An embedded DSL, as defined by Hudak [18], is a DSL
that is derived from a general-purpose programming language,
inheriting the infrastructure and tailoring it to the specific
domain.

Our approach to DSL design is part of a comprehensive
framework development process model that aims at not only
producing a high-quality framework but also at providing
a domain-specific language and a pattern language. Those
outputs may well become more valuable than the framework
itself since they can be reused beyond the framework. Our pro-
posed process model explicitly distinguishes three workflows
– framework, metamodel, and patterns – and three phases –
inception, construction, and formalization – in the develop-
ment process. We also promote the iterative nature of process
so that all outputs – framework, DSL, and pattern language –
are derived incrementally, feeding from the evolution of the
other products. We describe all these workflows and phases,
including their interactions, in Section 2.

In some sense, our approach resembles the one outlined by
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Roberts and Johnson [28] in their collection of framework pat-
terns. We review their approach, together with others related
process models, in Section 3.

In order to illustrate these ideas, we present a case-study in
the multimedia domain in Section 4. For several years we
have been developing CLAM, a framework for audio and
multimedia (see Section 4.1) . The process has produced a
full-fledged domain-specific metamodel (presented in Section
4.2), a DSL with several concrete syntaxes (see Section 4.3),
and a Pattern Language (see Section 4.4).

2 A DSL-O RIENTED FRAMEWORK DEVELOP-
MENT PROCESS

In this section we propose a general-purpose process model
for framework development. The goal of such a process
will be – beyond the obvious design of a well-constructed
and useful framework – the generation of a domain-specific
language (or several) and a pattern language. The iterative
formulation of a domain metamodel drives the design process,
which can be considered a particular approach to Model-
Driven Development (MDD) [25] in the context of framework
development.

The proposed process model is mainly derived from the
authors’ experience in developing the CLAM framework. The
details of this particular process and its outcomes will be
explained in Section 4. We shall now focus on formulating
a general-purpose approach based on those learnings.

Figure 1 illustrates the main activities in the proposed
framework development process. The process is divided into
three separate threads orworkflows: Framework Workflow,
Metamodel Workflow, and Patterns Workflow. Each of these
workflows encompasses and frames activities at a particular
abstraction level.

We also show three distinct phases in the development
process, which we callInception, Construction, andFormal-
ization1. Each phase hosts different activities with a different
goal in mind. However, note that we provide several iteration
points. For instance, the Construction phase, where most of
the development will occur, should be completely incremental
with iterations as short as possible. Also, once the formaliza-
tion phase is concluded, we do not expect the framework to
remain unchanged. For this reason we provide the model with
an iteration point that leads back into the Construction phase.

Our proposed model is in fact favorable toagile principles.
Among other things, we advocate for a simple upfront analysis
and design and an iterative approach for the rest of the
process. Our process can therefore be considered as a concrete
implementation ofagile metamodeling[6] in the context of
framework development.

The novelty in our process model is not so much in the way
a particular workflow is addressed, since in each of them we
rely on well-known techniques and practices. The novelty isin
the fact that the three workflows are addressed in parallel, and
we expose an explicit relation and communication channels
between all three workflows.

1. Although these names bears some resemblance with the Rational Unified
Process, our model is not related to the RUP framework

2.1 Framework Workflow

The framework workflow hosts all of the activities that focus
on delivering a useful framework in thetraditional sense
[13], [29]. Therefore, our proposed approach in this workflow
relies on applying well-known best practices for framework
development. In particular, we base our process model on the
following principles:

• Small initial investment
• Iterative and incremental development
• Application-driven framework design
• Strive for black-box behavior
In the next paragraphs, we will detail how these principles

are put into practice into each of the process phases.

2.1.1 Inception: Framework Requirement Elicitation
We do not favor a big upfront analysis and design phase. If this
is seldom advisable when developing any kind of application,
it is even less so when developing a framework. The number
of use cases and breadth of the problem, make the unknowns
grow exponentially.

We cannot aim at capturing the details of a whole domain
during this initial phase. However, there are important ac-
tivities that we should undertake in order to obtain a first
rough domain analysis. When developing a regular system,
we usually identifyactors that will interact with our system.
It is important to bear in mind that in a framework, a special,
and most important, form of actors, will be the concrete
applications that will be developed within the framework.
Therefore, one of the basic activities in this phase will be
to identify a set of relevant applications that play the roleof
the actors by defining some initial use cases. Ideally, we want
around 3 to 4 applications that give a good enough sample
of the problem space –i.e. they should have requirements as
different as possible and represent as many of the targeted
use cases as possible. In CLAM, for instance, we choose an
application with strong real-time requirements, another one
with a complex process flow, and a final one with a focus on
a complete and flexible user interface (see Section 4.1 for
more details). The initial selection of applications to drive
framework development is captured by theThree Examples
pattern in Roberts and Johnson’s catalog [29].

Ideally, the applications we choose to drive our framework
design will already be developed and fully functional. The
goal when choosing these applications is to treat them as if
they were to be refactored into the framework infrastructure.
A welcomed side effect of choosing working applications is
that these will have developers with a good understanding of
the domain. These developers should help us understand the
domain and should become our on-site clients on the technical
side.

The inception phase should be as short as possible. How-
ever, finding the set of relevant applications and understanding
their requirements is not a trivial task.

2.1.2 Construction: Application-driven Framework De-
sign
In the inception phase we chose applications with the idea
to refactor them into the framework, while the framework
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Fig. 1. Main activities in our framework development process model that includes three workflows – framework,
metamodel, and patterns – and three phases – inception, construction, and formalization.

itself is designed to host the requirements posed by them.
However, although some applications might yield themselves
to be progressively refactored into a framework, from our
experience it is usually better to rewrite them from scratch.
Sample applications set the basis for the requirements, but
these requirements evolve during the process. Driving appli-
cations might well be treated asthrow-away prototypes. If
the process is done correctly, the framework will give birth
to many more successful applications and even the original
driving applications should be improved if still needed2.

Framework design is an ongoing and continuous refinement,
each new iteration is likely to impose new requirements
and challenges onto it. But after some iterations the core
framework development should become minimal. This idea of
core frameworkis similar to Bosch’set al.model of framework
development where they distinguish betweencore framework
development andinternal increments[13]. But in our process
model, we promote internal increments that end up delivering
the core framework as a consequence, rather than trying to fix
the core in an initial upfront design.

2.1.3 Formalization: Black-box Behavior

The goal of the framework workflow should be to come up
with a framework that is as close as possible to a black-box
behavior. A black-box framework is one in which you can
develop applications by simply plugging components together

2. Many times the functionality that was originally offeredby a focused
application is offered as a service in the framework

without the need to use inheritance and understand the internal
behavior of the classes [21].

In order to reach the ideal completely black-box behavior,
we would need to offer ready-to-use versions of any com-
ponent that could be needed in the framework domain. This
might be feasible if the framework is focused on a small
enough sub-domain. However, most of the time, our goal will
be to minimize, rather than to eliminate, the need for white-
box intervention.

In this phase, once the framework infrastructure (or core)
is stable enough, we will deliver a black-box version of the
most useful components. As an alternative, we can sometimes
design pluggable objects[28], classes that can be easily
parametrized in order to change the behavior, therefore re-
ducing the number of classes we need to effectively cover the
problem space.

A fully functional black-box framework is very close to a
DSL. If we have followed a similar progression in the meta-
model workflow, all we need to do is add an appropriate syntax
and tools to interact with the model by plugging components.
As a matter of fact Johnson & Roberts’Visual Builder [28],
which is a natural evolution of the black-box framework, can
be considered a visual domain-specific language.

2.2 Metamodel Workflow

While the goal of the framework workflow is to come up with
an appropriate set of tools for application developers in the
domain, the goal of this metamodel workflow is to come up
with the appropriateconcepts. In a similar way, we will start
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with an open and evolving metaphor that will turn into a more
concrete domain metamodel [16] as iterations go. The final
goal will be to turn this metamodel into a DSL with several
syntaxes that offer the users direct access to the metamodel
concepts. Ideally, one of these syntaxes will be of a graphical
form therefore becoming thevisual builderin the framework.

2.2.1 Inception: Domain Analysis or the First Metamodel

One of the main activities in the inception phase is to
perform some sort of domain analysis. The main activities
involved in domain analysis are: (1) Domain characterization,
(2) data collection, (3) data analysis, (4) classification,and
(5) evaluation of the domain model [7]. These activities
will take place regardless of the approach. However, time
and efforts devoted to each task will vary. For instance, in
approaches that lean towards agile methods like ours, activities
(3) and (4) will tend to be minimized in the initial phase,
since they are expected to occur concurrently and iteratively
during the development phase. Furthermore, when developing
a framework, we want the domain analysis to be application-
driven. Therefore, “domain characterization” will be mainly
done by identifying the appropriate applications that cover the
problem space. And “data collection” will imply analyzing
these applications and understanding both their semanticsand
requirements. Finally, note that our model evaluation willbe
done through the framework implementation itself.

In the framework workflow, our goal was to select those
applications that will help us define the requirements and will
be used to drive the framework development. In this meta-
model workflow, however, we are concerned with activities
that deal with modeling domain concepts and constructs. As a
result, a first and rough metamodel should be verbalized. This
first metamodel can be in most senses treated as the “system
metaphor” [34] and should be used to better communicate
between framework developers and the potential users. It
should set a common understanding of what is being built
and with what purpose, by defining particular terminology and
procedures.

This metaphor should be treated as an “evolving meta-
model”. We do not expect it to be a ground truth and its
evolution will in fact mark its refinement. We should expect
this metamodel to become more concrete and also multi-
layered in each iteration.

At this stage already a few issues should be taken into
account when defining this metamodel:

• The reason we call this adomain metamodelas opposed
to a regular domain model is that the concepts should
not be tailored to a particular application but rather
capture the whole range of possible applications that the
framework is targeting in the given domain.

• One of the main objectives of sketching this metamodel
is to better communicate with the domain experts that
are targeted as users. Remember that this will become
the shared metaphor.

• Because of the previous point, it is important to choose
appropriate names and to consult with the input of
domain-experts when doing this analysis.

• Yet, it is important to remember – and explicitly state
– that this is an evolving metamodel. Some of the
preconceived ideas about the domain might prove wrong
or inexact during the framework development process.
We – and the domain experts – should be prepared to
embrace change.

2.2.2 Construction: Metamodel Refinement
The metamodel refinement takes place throughout the frame-
work development and in some sense will still be active as
long as the framework keeps evolving. However, most of
the metamodel refinement takes place in the Construction
phase, when white-box components (i.e. abstract classes) are
refactored to accommodate new requirements in the driving
applications.

Metamodel refinement should aim at making the first rough
approach more concrete and broad at the same time. Concrete
because particular applications and the framework implemen-
tation will have to be correctly explained by the metamodel;
and broad because the more applications and use we give to
the framework, the more we will be testing the metamodel
validity and its scope.

Unfortunately, metamodel testing cannot be automated in
any way, since it deals with verifying that conceptual con-
structs and concepts used in the evolving metaphor are validas
the framework design evolves. Metamodel testing at this stage
consists on the following activity: Given the current iteration
in the framework development process, verify that all concepts
and constructs in the white-box framework infrastructure can
be expressed simply by using the evolving metaphor. Make
sure that all driving applications can also be interpreted in
terms of the metamodel. Pay special attention to changes
introduced in latest framework increment. If any of the pre-
vious is not verified, iterate over metamodel/metaphor until
it can naturally explain current state in the framework. Other
complementary activitites for metamodel and DSL validation
that require having a more stable metamodel, will be described
in the formalization phase for this same workflow. However,
those activities can also be integrated with the iterations.

Metamodel refinement is not a sequential activity that needs
to be executed at the end of each iteration – adding the possi-
bility of blocking the development process. It is an activity in
the metamodel workflow and should therefore be carried out
in parallel to any framework development. Furthermore, we
have explained the natural and obvious flow of communication
from the framework to the metamodel. However, sometimes
– especially in later iterations, once the metamodel is more
stable – it is the metamodel that will remain fixed and enforce
some changes in the next iterations of the framework if this
has drifted from the metamodel without having a good enough
reason for doing so.

2.2.3 Formalization: Metamodel Consolidation and DSL
Implementation
Increments at the metamodel level will lead to a formalized
metamodel in the Formalization phase. But even this for-
malization might need to adapt to further refactorings as the
framework evolves.
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In any case, once we have a fairly stable metamodel and the
framework white-box behavior has been defined, we should be
ready to realize this metamodel through a DSL. Again, given
the iterative nature of our proposed model, it may well be that
a DSL already exists even if in a preliminary form. But, at
this stage the implementation of a DSL will simply require
deciding on a given notation that reflects the metamodel and
implementing the tool to interact with it.

One of the most difficult parts of this metamodel workflow
is to integrate proper testing and validation. We now describe
some of the activities that have proven useful to validate the
metamodel and associated DSL. Although we describe them
as if they were to occur at the end of the workflow, as a sort of
acceptance test, many of them can and should be intergrated
into the iterations so that the validation is also performed
iteratively.

As we showed in the evaluation of our multimedia meta-
model and DSL [4], a proper evaluation of a metamodel
should include a combination of qualitative and quantitative
studies. But, because in Software Engineering validation and
implementation go hand in hand [37], we base part of the
evaluation in the concrete implementation of the metamodel.

A first and necessary condition to prove the validity of
a metamodel is to prove that it isimplementableand its
implementation can be used to develop a variety of systems.
Another necessary condition to prove the usefulness of the
metamodel is to show that it can help understand systems
outside the framework that originated it. We can do this by
explaining how similar systems in the same domain can be
explained or even synthesized using the metamodel and its
DSL.

Finally, we can formally assess the validity of the framework
by combining dimensions derived from the general Software
Engineering corpus [37] with others borrowed from the Cogni-
tive Dimensions Framework [17]. Higher-level dimensions can
be used to validate and test the metamodel, while lowever level
dimensions – such as the ones in the Congitive Dimensions –
can help us validate the DSL.

Some high-level dimensions that can be use to validate a
metamodel are [36]:feasibility, completeness, and usability.
Feasibility refers to how practical the abstractions in the
metamodel are and how well they fit the requirements in our
particular domain.Completenessreflects two complementary
questions: (1) cananysystem in the domain be modeled with
the metamodel that is proposed? and (2), can a system be
completely modeled using an instance of the metamodel? And
Usability tries to answer questions such as whether it is easy to
build new models and generate systems using the metamodel;
whether the metamodel is usable by third parties; and whether
existing projects can easily be converted to the metamodel.

The Cognitive Dimensions Framework [17] includes finer-
grain dimensions that can be used to validate the DSL. This
framework has been specifically designed for evaluating visual
languages but many of its dimensions are applicable to non-
visual DSLs. The Framework includes dimensions such as:
Viscosity, Hidden Dependencies, Hard Mental Operations,
Imposed Guess Ahead, andSecondary Notation.

2.3 Patterns Workflow
Patterns should be instrumental throughout the framework
development process. As a matter of fact, they should influence
the development process in many ways. Not only do we
promote the use of different kinds of patterns, but we also
introduce the idea that patterns should be one of the expected
outputs of the process. A complete pattern language should
be the perfect complement for the full-fledged metamodel and
DSL obtained in the metamodel workflow. Patterns help us
document frameworks [20], but not only that: using patterns
allows us to understand the framework as a composition of
patterns [35].

In the following paragraphs we will highlight how patterns
are used, discovered, and formulated in the different phases of
this pattern workflow.

2.3.1 Inception: Patterns for Analysis
The first thing we need to be aware of and understand are the
so-calledmeta patterns. According to Pree: “Meta patterns
are a set of design patterns that described how to construct a
framework independently of the domain” [27]. An example of
meta patterns that should be reviewed before starting the task
of designing a framework are those by Roberts & Johnson
[29]. Understanding these meta patterns will be the first use
of patterns in our pattern workflow.

On the other hand, it should be obvious that this inception
phase is the natural host for all sort of analysis patterns. These
patterns can be grouped into three different categories: (1)
general analysis patterns, (2) specialized analysis patterns, and
(3) domain patterns [30].

However, generally applicable analysis patterns, indepen-
dent of the domain, are hard to find. And when they exist,
they tend not to give a very concrete solution to an analysis
problems. A good example are some of the patterns in the
GRASP catalog [22]. Also related, are general purpose archi-
tectural patterns such as those in the POSA catalog [14]. These
can indeed be considered a form of analysis patterns since they
can define a high-level starting point for our design.

But, what we are most interested in our process model
is uncovering domain patterns. These domain patterns will
follow an analysis process made of three different but related
activities:

• Pure Domain Patterns Elicitation: By talking to domain
experts and regular stakeholders, our goal is to identify
patterns that are used in the domain. Patterns should be,
as always, a recurring solution to a problem in a context.
At this stage, these domain patterns can be completely
detached from any software solution, since they simply
explain how domain experts address those issues and
situations that we will be covering in our framework.

• Metaphorical Patterns Description: Given the metaphor
(i.e. rough domain metamodel) described in the meta-
model workflow, we want to identify, already in this
phase, related patterns. This basically entails translating
the pure domain patterns elicited in the previous step to
the concepts and constructs of the driving metaphor.

• Usage Patterns Projection: By choosing the driving
applications in the framework workflow, we are defining
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what we deem are relevant framework use cases. As a
matter of fact, an initial assessment of the requirements
posed by the driving applications will already uncover a
number of recurring usage needs. At this point we are
likely to identify some recurring problems and contexts
but not their solution. Still, it is a good practice to record
these usage patterns and bear them in mind in the next
phases.

Some of these uncovered domain patterns might be related
to pre-existing patterns in neighboring domains. Therefore, we
should not forget to support our findings by searching for
pattern catalogs describing similar or related domains. Inthe
multimedia pattern language we present in Section 4.4, for
instance, we were able to re-use and adapt patterns coming
from related dataflow languages.

2.3.2 Construction: Pattern Evolution

The main goal for the construction phase is to evolve the
different patterns that were identified in the inception phase.
First, patterns related to the metaphor should progressively
evolve into metamodel patterns with the final goal of being
able to understand the metamodel as a composition of these
patterns. As a matter of fact, some of these metamodel patterns
might at some point become part of the metamodel, since they
will be defining concepts and constructs that are inherent to
the metamodel itself.

On the other hand, this is the phase where usage patterns
will be formulated and become concrete. The different itera-
tions in the framework workflow will end up offering solutions
to the usage problem-context pairs identified in the inception
phase. Usage patterns will also help evolve the framework and
the metamodel in the right direction.

The construction phase is also the natural place where
standard design patterns will be used. Ideally, these patterns
will not only be used but will also help define the low-level
design for some of the metamodel patterns. As a matter of fact,
some of the metamodel patterns might be a sort of specialized
design patterns for the given domain.

2.3.3 Formalization: Pattern Language Formalization

As seen in the previous phases, both the metamodel and
the framework itself give place to a number of patterns
that include domain patterns, metamodel patterns, specialized
design patterns and usage patterns. This does indeed prove the
feedback between the three workflows.

Our final goal in this workflow is to define agenerative
pattern language3 – i.e. a pattern language that not only
explains rules of arrangement but also allows users to create
endless combinations [2]. Therefore, patterns should aim at
being coherent. However, they should also be useful in iso-
lation and in different settings than the ones defined by the
metamodel. Patterns in our final generative pattern language

3. Note that the use of the word “language” in this context is not consistent
with the formal notion of language as in Domain Specific Language. We have
chosen to use the expression “Pattern Language” for consistency with existing
literature. In this context, a Pattern Language should be understood, as defined
by Johnson, as “a set of patterns, each of which describes howto solve a
particular kind of problem” [20].

may address high-level architectural problems, offer solutions
to a particular usage of the framework, or give low-level design
details for some of the components.

3 RELATED APPROACHES

Roberts & Johnson proposed an approach to framework devel-
opment that is somewhat similar to ours [28]. As a matter of
fact, and to the best of our knowledge, it is the only approach
that touches upon the three workflows included in our process
model. They propose to base framework development in a se-
ries of patterns that cover different phases of the development
process. For instance, theThree Examplespattern advocates
for identifying three applications early on to drive the design.
The main phases according to this pattern language would be
white-box, black-box, visual builder. This is indeed similar to
our proposed approach in which a DSL should be the ultimate
goal of the development process – as a matter of fact, the DSL
can be understood as the sum of thevisual builder and the
language toolspattern, also included in their catalog.

However, there are important differences between our model
and that of Robert & Johnson. First, although the authors do
set a path to go from initial framework design to a DSL,
they do not establish the definition of the DSL as a goal
of the process itself. As a matter of fact, they consider that
many frameworks will never make it to the final stage so they
will never have the need to provide any kind of DSL. The
authors do not distinguish different workflows – although they
do explain that some patterns are concurrent – or identify
phases and activities. More important perhaps, they do not
establish a clear relation between parallel activities. Also, it
is difficult to interpret how to fit in the iterative nature of the
process into their pattern language. Finally, and althoughtheir
main concern is the patterns workflow, they do not consider
how patterns at different levels may be needed. For instance,
they do not discuss the need of design patterns or domain-
specific patterns. In any case, we do not see our process model
as opposed to this pattern language. Our approach is more
comprehensive, detailed, and structured but it is completely
compatible with Roberts & Johnson patterns and complements
them in many ways.

Van Deursenet. al [32] explain that a typical development
of a DSL involves three steps with a number of phases:

• Analysis: (1) identify problem domain, (2) gather domain
knowledge, (3) cluster knowledge into small number of
concepts, and (4) design a DSL that describes applica-
tions in the domain.

• Implementation: (1) Construct a library that implements
the concepts, and (2) design and implement a compiler
that translates DSL programs to library calls

• Use: (1) Write DSL programs for all applications
Although this approach bears some resemblance with our

three phases, there is a very important conceptual difference in
that it promotes ananalysis-firstapproach to DSLs. Also, there
is no notion of iteration between phases. Most importantly,it
does not provide any relation between the development of the
DSL and that of the framework.

Aksit et. al [1] propose a four phase approach to building
frameworks using domain models. First, they model the top-
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level structure of the framework using the so-calledknowledge
graphs. Second, they refine each node in the graph into an
acyclic sub-knowledge graph calledknowledge domain. Third,
they identify which nodes can be included together in the top-
level knowledge graph. Finally, they map knowledge domains
into OO concepts. This approach is interesting in that it
addresses both the framework and metamodel workflows. But
the model is so much focused on formalities that its practical
applicability in the general case is not clear.

Van Deursen notes the similarity between DSLs and OO
frameworks in his case study on the financial domain [31]. He
concludes that when developing a DSL from scratch, it makes
sense to do it by extending an OO framework. Using a DSL
in the context of a framework development has, according to
van Deursen, the following advantages: (1) it is a guide to the
framework design since any construct that does not fit naturally
into the DSL should probably not be in the framework either,
(2) it encourages black-box, as opposed to white-box, behavior
in frameworks, and (3) it gives more abstract access to the
framework, encapsulating even the language used to develop
the framework. The author’s conclusions when relating frame-
works and DSLs are in essence very similar to ours except
that the starting point is different: we advocate for a process
that integrates metamodel and framework workflows since the
beginning while Van Deursen starts from the premise that a
pre-existing framework can benefit from a DSL.

Bonacheaet. al [12] present a practical case study of devel-
oping a DSL for costumer user profiling. They advocate for
a completely iterative process model, with iteration occurring
between most activities. They report executing the following
activities: (1) interview domain experts, (2) develop models,
(3) write programs that observe the models by hand, (4) design
the language, (5) write programs using the language, (6) im-
plement runtime system and language compiler. In particular,
they stress the importance of keeping domain experts involved
during the whole process. Although this approach focuses only
on our metamodel workflow, it is interesting since it highlights
the iterative nature of the DSL nature, which is also a very
important conclusion of our approach.

Cleaveland [15] proposes a process model for building
application generators, which are a particular case of DSL
in which a compiler translates high-level specifications into
a regular low-level programming language. The process they
propose is made of seven steps: (1) recognize domains, (2)
define domain boundaries, (3) define an underlying model, (4)
define the variant and invariant parts, (5) define specification
input, (6) define products, and (7) implement the generator.
According to Cleaveland, all but the last step are led by domain
analysts. His proposed approach can be seen as a serialization
of our concurrent metamodel and framework workflows in
which initial activities are more related to the metamodel and
final ones to the framework.

Yacoub & Ammar describe a pattern-oriented approach to
build software systems known as POAD (Pattern-oriented
Analysis and Design) [35]. In particular, they focus on how
to use design patterns starting already in the analysis phase.
They identify two approaches to using patterns:stringing,
in which patterns are glued together to compose a design;

and overlapping, in which the same class can belong to
several patterns. POAD advices for the use of the stringing
approach at the higher levels of abstractions while allowing
for overlapping patterns in the detail design of the lower
levels. Although this approach is a good approximation to our
patterns workflow, there are several differences. For instance,
the POAD approach only deals with the use of pre-existing
design patterns assuming that a pattern library exists whenthe
analysis phase starts. The main goal of the analysis phase is
in fact to select the most appropriate patterns, which are later
integrated into the model in the design phase. Also, analysis
patterns are not included in the POAD process, nor is the goal
of the development to uncover new domain-specific patterns.

Finally Jacobsenet. al present a pattern-oriented approach
specific for framework development [19]. They highlight the
distinction between regular design patterns andmeta patterns
and show that patterns are useful in different ways in all phases
of the framework development process – analysis, design, and
implementation. During these phases, not only new patterns
are created but others are evolved by either transformationor
replacement. The authors capture the importance of both using
and generating patterns during the process in an incremental
manner, but they do not show how to formalize this into a
pattern language nor mention any connection to metamodeling
activities.

4 A CASE STUDY IN THE MULTIMEDIA DOMAIN

The history of software frameworks is very much related to
the evolution of the multimedia field itself. Many of the most
successful and well-known examples of software frameworks
deal with graphics or user interfaces. Although probably less
known, the audio and music fields also have a long tradition
of similar development tools. It is in this context where we
find our award-winning CLAM framework [3]4.

During the CLAM development process several parallel ac-
tivities have taken place. While some sought the goal of having
a more usable framework, others dealt with the appropriate
abstractions and reusable constructs in the domain. The latter
gave place to the definition of a complete metamodel for
the multimedia domain, and a pattern language for dataflow-
oriented systems. Most of these ideas, although a result of the
CLAM process itself, are validated by their presence in many
other multimedia frameworks and environments.

Our experience in this development process originated
the general approach we presented in Section 2. As such,
CLAM touches upon the three workflows and phases described
therein. In this section we will not detail the activities and prac-
tices used in the process since they are already documented
in the general-purpose approach. Instead, we will describethe
output of each of the workflows. In section 4.1, we explain
the main components and features of the framework, which
are the result of the framework workflow. In section 4.2, we
explain the metamodel, and in section 4.3 we show how this
metamodel can be accessed through a number of associated
DSLs. Finally, section 4.4 briefly explains the pattern language
that was produced in the patterns workflow.

4. It received the ’06 ACM Best Open-Source Multimedia Software award
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4.1 CLAM: A Multimedia Processing Framework

CLAM (originally from C++ Library for Audio and Music)
is a full-fledged software framework for application develop-
ment. Although it was initially tailored for audio and music,
it has also proven its applicability to the broader Multimedia
domain. CLAM has been used for applications that range from
on-the-fly analysis of video soundtracks [33] to 3D audio
spacialization and integration with 3D visual scenes [10].It
offers a conceptual domain-specific metamodel; algorithms
for analyzing, synthesizing and transforming audio signals;
tools for handling audio and music streams and creating cross-
platform applications; and ready-to-use applications.

We will now highlight the main features in CLAM. For fur-
ther information please refer to our comprehensive overview
[5] or to any of the more focused publications cited therein.
CLAM, as well as all other included applications mentioned in
this paper, is available for download in the project webpage5.

CLAM offers a processing kernelthat includes aninfras-
tructure and processing and datarepositories(see Figure 2).
CLAM is both a black-boxand awhite-boxframework [28].
It is black-box because already built-in components included
in the repositories can be connected with minimum or no pro-
grammer effort in order to build new applications. It iswhite-
boxbecause the abstract classes that make up the infrastructure
can be derived to extend the framework functionality with new
processes or data classes.

The CLAM infrastructure is the result of an in-depth and
iterative domain analysis. It encompasses a number of abstract
classes that are responsible for the white-box or extensible
behavior in the framework. In order to build a particular
CLAM system, the user has to instantiate the concrete derived
classes or implement a derived class that might add a new
specific processing capability. Theinfrastructure component
also includes the application logic such as dataflow graph
management and nodes execution.

CLAM contains aprocessing repositoryand adata reposi-
tory. The processing repository contains a large set of ready-
to-use processing algorithms. On the other hand, the data
repository contains all the classes that act as data containers
or encapsulated versions of the most commonly used data in
the domain. These classes make use of the data infrastructure
and are therefore able to offer metaobject services such as a
homogeneous interface or built-in automatic XML persistence.

CLAM also includes a number of tools for services such
as input/output or XML serialization. These tools aim at
being a swiss-army knife of services that might be needed
in the domain. All of these tools are possible because of the
integration of third party open libraries into the framework. In
this sense, one of the benefits of using CLAM is that it acts as
a common point for already existing heterogeneous services
[3].

The framework has been tested on – but also its develop-
ment has been driven by – a number of applications. Many
of these applications were used in the beginning to set the
domain requirements and they now illustrate the feasibility of

5. http://www.clam-project.org

the metamodel, the use of the design patterns, and the benefits
of the framework.

4.2 4MPS: A Multimedia Domain-specific Metamodel

The results of the CLAM development process in its meta-
model workflow was the Metamodel for Multimedia Process-
ing Systems (4MPS for short) [4], a metamodel for designing
multimedia processing software systems –i.e., multimedia sys-
tems that are designed to run preferably on software platforms
and are signal processing intensive. Such systems share many
constructs not only in the form of individual and independent
design patterns but also at the overall system model level.

For this reason we proposed a coherent metamodel that
can be used to efficiently model any multimedia processing
system and aims at offering a common high-level semantic
framework for the domain. The metamodel uses the object-
oriented paradigm and exploits the relation between this
paradigm and actor-oriented graphical models of computation
used in system engineering. The metamodel is not only an
abstraction of many ideas found in the CLAM framework but
also the result of an extensive review of similar frameworks.
It is therefore expected that domain-experts are familiar with
most of its concepts and constructs.

The metamodel is based on a classification of signal pro-
cessing objects into two categories:Processingobjects that
operate on data and control, andData objects that passively
hold media content. Processing objects encapsulate a process
or algorithm; they include support for synchronous data pro-
cessing and asynchronous event-driven control as well as a
configuration mechanism and an explicit life cycle state model.
On the other hand, Data objects offer a homogeneous interface
to media data, and support for metaobject-like facilities such
as reflection and serialization.

Although the metamodel clearly distinguishes between these
two different kinds of objects, the managing of Data constructs
can be almost transparent for the user. We can therefore de-
scribe a 4MPS system as a set of Processing objects connected
in graphs calledNetworks(see Figure 3).

The metamodel can also be expressed in the language
of graphical models of computation as a particular case of
Dataflow Networks[23]. Different properties of the systems,
such as their optimal schedule or minimal latency [8] can be
derived in this way.

4.3 Accessing the Metamodel through a Domain-
Specific Language

The 4MPS metamodel offers a domain-specific ontology that
helps software developers understand the domain and helps
domain experts understand the framework. However, we are
still lacking the concrete tools that give users easy accessto
all these services and put them together in a coherent way:
we lack the concrete syntax given by the notation in which to
express it, we need a domain-specific language.

One immediate way to access all these services and interact
with the metamodel layer is to use the framework itself
and code new applications by using the black-boxes that
are provided and extending the white-boxes. In some sense,
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Fig. 2. CLAM Components. The CLAM framework is made up of a Processing Kernel and some Tools. The Processing
Kernel includes an infrastructure that is responsible for the framework white-box behavior and repositories that offer
the black-boxes. Tools are usually wrappers around pre-existing third party libraries. A user application can make use
of any or all of these components.

Fig. 3. Graphical model of a 4MPS processing network. Processing objects are connected through ports and controls.
Horizontal left-to-right connections represents the synchronous signal flow while vertical top-to-bottom connections
represent asynchronous control connections.
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Fig. 5. Main participant classes in the CLAM implemen-
tation of the 4MPS metamodel

the code —together with the metamodel, and the patterns—
provides a low-level DSL. There is, however, an important
issue with using this approach: the DSL syntax becomes
coupled to the low-level programming language syntax. This
makes it hard for users to focus on the metamodel level and
it becomes a barrier to its understanding.

For this reason, we decided to offer an alternative and more
accessible DSL syntax in the form of a visual language. 4MPS
is itself a graphical metamodel so offering access to this level
becomes immediate and simply a matter of implementing
the appropriate tool. In CLAM, this tool is known as the
NetworkEditor —because of its relation to the Network class
in the metamodel. The Network Editor allows users to interact
directly with a graphical representation of the metamodel (see
Figure 4), which in turn maps directly to framework classes
and constructs.

The Network Editor is a stand-alone application developed
by adding a presentation layer to the framework classes. The
user can directly access the repository of black-box compo-
nents and interact with it by configuring objects and defining
4MPS Networks. The tool cannot only be used to build fast
prototypes but it can in fact generate final applications, either
stand-alone or audio plugins, with efficiently compiled code.

Both the metamodel and the associated DSL were evaluated
using the approach described in Section 2.2.3. See the publi-
cation where the metamodel is presented for more details on
the results [4].

4.3.1 Optimized CLAM DSL Syntaxes for Specific Prob-
lems

Although the graphical representation of the metamodel is
usually preferred, it is sometimes practical to have a direct
one-to-one mapping to a textual format. In the case of CLAM,
XML was chosen as the basis for our textual-based DSL
syntax (see example in Listing 1). Because these textual files
contain a complete definition of a 4MPS Network, they have

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>

<network id="ExampleNetwork">

<processing id="file_reader" type="AudioFileReader">

<SourceFile>

<URI>/home/xavier/0001.wav</URI>

</SourceFile>

<Loop>1</Loop>

</processing>

<processing id="sink" type="AudioOut">

</processing>

<processing id="control_sender" type="OutControlSender">

<Min>0</Min>

<Default>0</Default>

<Max>1</Max>

<Step>0.01</Step>

<ControlRepresentation>Vertical Slider</ControlRepresentation>

</processing>

<port_connection>

<out>file_reader.Samples</out>

<in>sink.Audio Input</in>

</port_connection>

<control_connection>

<out>control_sender.out</out>

<in>file_reader.Offset</in>

</control_connection>

<flowcontrol type="Push"/>

</network>

Listing 1: Simplified example of a 4MPS Network definition
using CLAM’s XML Networks DSL syntax.

network = ClamNetwork(file(fullSourcePath))

network.setConfig(source, "NSources", numPorts))

for i in range(numPorts) :

newProcessing = "%s_%s"%(delay,i)

network.duplicateProcessing(delay, newProcessing, 10*i, 50*i)

network.addConnection(’control_connection’, "BackgroundDelay",

"0", newProcessing, "Delay in Samples")

Listing 2: Example of a complex CLAM network defined as a
modification of a previous network (maybe designed with the
Visual Networks syntax) using the Scripted Networks DSL
syntax.

a direct visual representation. This allows users to interact
graphically with the metamodel without directly accessingthe
CLAM framework. As a matter of fact, the Network Editor
itself bases its persistency format on this XML schema.

This way we see that the metamodel is not coupled to
a particular visual language but can in fact be instantiated
by different syntaxes such as an XML dialect or a scripting
language. As a matter of fact, once we have the metamodel
and the framework in place we can think about extending the
available syntaxes with other syntaxes that are optimized for
some particular uses.

The following list summarizes the 5 syntaxes that have
been developed within CLAM with their advantages and
disadvantages:

• Black-box C++ is code in C++ using the black-box
framework style (i.e. instantiating Processing objects via
factories, connecting their data and control ports, con-
figuring their parameters and setting them into running
state.
Pros: It gives total flexibility and it is appropriate for
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Fig. 4. NetworkEditor is the visual DSL for the CLAM framework. It can be used not only as an interactive multimedia
dataflow application but also to build networks that can be run as stand-alone applications.

some specific uses, such as the ones requiring a complex
application logic.
Cons: Exposes the C++ syntax and low-level (non
domain-related) details to domain-experts. It may also
be unsafe, since the user can introduce operations that
compromise the execution requirements such as real-time
constraints.

• Black-box Scripting is based on Python code in the
black-box framework style.
Pros: It has a simplified syntax, when compared to the
black-box C++, while still retaining much of its flexibil-
ity. It allows for interactive signal-processing scripting in
Python. It eases the process to graphically represent data
using drawing packages.
Cons: It does not allow running in real-time with low-
latency, and it does not separate the network configuration
state from the network running state.

• Scripted Networks Python code using a module for
creating and modifying previously created networks (see
listing 2) This syntax is used to scale up simpler networks
created with the Visual Networks DSL syntax. Therefore,
the two concrete syntaxes works synergistically in a same
workflow.
Pros: It is the concrete DSL syntax in CLAM that allows
for a better management of complexity, because of its
high-level interface for creating and modifying networks.
The runtime of this concrete DSL syntax is CLAM’s Pro-
totyper which offers both real-time and offline operation.
Cons:Though it comes close, it is not as flexible as the
black-box framework approaches.

• XML Networks is the textual XML definition of a
network (see listing 1)
Pros: It gives access to all the details the network. Can
be written programaticaly and executed efficiently with
CLAM’s Prototyper. It allows for repetitive operations

by using textual functions such as “copy & paste” or
“replace all”. It is the serialization format of the Visual
Networks.
Cons:It is less intuitive, difficult to modify, easy to cause
errors. Better manipulated through intermediate tools.

• Visual Networks is the NetworkEditor’s visual building
language (see fig 4).
Pros: It is an intuitive and didactical way to describe
multimedia processing algorithms allowing both signal
processing and control flows. It executes compiled code
efficiently while allowing users to interact with control
parameters and to receive visual feedback of data flowing
through the network.
Cons: It is difficult to manage big or repetitive networks
– for example when the number of sub-networks is a
configurable parameter. It is also difficult to reconfigure
parameters consistently across many processing objects
in the network (or many networks).

4.4 A Pattern Language for Multimedia Processing
Systems

While 4MPS offers a valid high-level metamodel for the
domain, it is sometimes more useful to present a lower-level
architecture in the language of design patterns, where recurring
and non-obvious design solutions can be shared. Such a pattern
language bridges the gap between an abstract metamodel such
as 4MPS and the concrete implementation given a set of
constraints. It also provides an efficient way to document the
framework itself [20].

In the following paragraphs we offer a brief summary of a
complete pattern language for dataflow real-time multimedia
processing formalized by the authors [9].

All the patterns in our catalog fit within the generic ar-
chitectural pattern defined by Manolescu as theData Flow
Architecture[24]. However, this architectural pattern does not
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address relevant problems related to the real-time multimedia
processing such as message passing protocols, scheduling
of processing-objects executions or data management. Our
pattern language is organized within three main categories:

• General Dataflow Patternsaddress problems of how to
organize high-level aspects of the dataflow architecture,
by having different types of module connections.

• Flow Implementation Patterns address how to physi-
cally transfer tokens from one module to another, accord-
ing to the types of flow defined by thegeneral dataflow
patterns. Tokens life-cycle, ownership and memory man-
agement are recurrent issues in those patterns.

• Network Usability Patterns address how humans can
interact with dataflow networks.

Some of the patterns in the catalog are very high-level while
other are much focused on implementation issues. Although
the catalog is not domain-complete, it can be considered a
pattern languagebecause each pattern references higher-level
patterns describing the context in which it can be applied,
and lower-level patterns can be used to further refine the
solution. These relations form a hierarchical structure depicted
in Figure 6. The arcs between patterns represent “enables”
relations: introducing a pattern in the system enables other
patterns to be used.

The catalog shows how to approach the development of a
complete dataflow system in an evolutionary fashion without
the need to dobig up-front design. On each decision, which
will introduce more features and complexity, a recurrent
problem is faced and addressed by one pattern in the language.

Two of these patterns,Typed ConnectionsandPort Monitor,
are central to CLAM because they enable two key features of
the framework which are: One, the ports are typed but not
restricted to a number of types and two, the processed data
can be visualized in real-time while keeping up with the lock-
free constraints of the processing thread.

We shall now provide here a summarized version as an
example of the kinds of patterns available in the catalog.
Apart from their importance in the context of CLAM, we
have chosen these two patterns for another reason: They both
have broad applicability beyond the specific context of our
framework. Complete versions of these and the rest of the
patterns can be found in the original catalog [9].

4.4.1 Pattern: Typed Connections

Context: Multimedia dataflow systems might need to manage
different kinds of tokens. In the audio domain we might
need to deal with audio buffers, spectra, spectral peaks,
MFCC’s, etc. Heterogeneous data could be handled in a
generic way (common abstract class, void pointers...) but this
adds a dynamic type handling overhead to modules. Module
programmers should have to deal with this complexity and
this is not desirable. It is better to directly provide them the
proper token type. Besides that, coupling the communication
channel between modules with the actual token type is good
because this eases the channel internal buffers management.

Using typed connections may imply that the entity that
handles the connections should deal with all the possible types.

Dataflow Architecture

Semantic Ports

Driver Ports Stream and Event Ports

Typed Connections

Multi−rate Stream Ports Cascading Event Ports

Multiple Window Circular Buffer

Phantom Buffer

Recursive Networks Port Monitor Visual Prototyper

General Dataflow Patterns

Flow Implementation Patterns

Network Usability Patterns Visual Prototyping Patterns

A B A enables B

A uses BA B

Fig. 6. The multimedia dataflow pattern language. High-
level patterns are on the top and the arrows represent the
order in which design problems are being addressed by
developers.

This could imply, at least, that the connection entity would
have a maintainability problem.

Problem: Connectible entities communicate typed tokens
but token types are not limited. Thus, how can a connection
maker do typed connections without knowing the types?

Forces:

• The processing thread is cost-sensitive and should avoid
dynamic type checking and handling;

• Connections are done at run-time by the user, so mis-
matches in the token type should be handled;

• Dynamic type handling is a complex and error prone
programming task, thus, placing it on the connection
infrastructure is preferable than placing it on concrete
modules implementation;

• The collection of token types evolves and grows and this
should not affect the infrastructure.

Solution:
Split complementary ports interfaces into an abstract level,

which is independent of the token-type, and a derived level
that is coupled to the token-type. Let the connection maker
set the connections thorough the generic interface, while the
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Fig. 7. Class diagram of a canonical solution of Typed
Connections

connected entities use the token-type coupled interface to
communicate with each other. Access typed tokens from the
concrete module implementations using the typed interface.
Figure 7 shows the class diagram for this solution.

Use run-time type checks when modules get connected
(binding time) to make sure that connected ports types are
compatible, and, once they are correctly connected (processing
time), rely only on compile-time type checks. To do that, the
generic connection method on the abstract interface (bind)
delegates the dynamic type checking to abstract methods
(isCompatible andtypeId) implemented on token-type
coupled sub-classes.

Consequences:The solution implies that the connection
maker is not coupled to token types. Only concrete modules
are coupled to the token types they use.

Type safety is ensured by checking the dynamic type at
binding time and relying on compile time type checks during
processing time. So this is both efficient and safe.

Because both sides of the connection know the token type,
buffering structures can deal with tokens in a wiser way when
doing allocations, initializations, copies, etc. Concrete modules
only have access to the static typed tokens. So, no dynamic
type handling is needed.

4.4.2 Pattern: Port Monitors

Context: Some multimedia applications need to show a graph-
ical representation of tokens that are being produced by some
module out-port. While the visualization only has soft require-
ments related to its smoothness, the process has real-time
requirements. This normally requires splitting visualization
and processing into different threads, where the processing
thread is scheduled as a high-priority thread. But because the
non real-time monitoring must have access to the processing
thread tokens some concurrency handling is needed and this
often implies locking in the two threads.

Problem: We need to graphically monitor tokens being pro-
cessed. How to do it without locking the real-time processing
while keeping the visualization fluid?

Forces:

• The processing has real-time requirements (i.e., The
process result must be calculated in a given time slot)

• Visualizations must be fluid; that means that it should
visualize on time and often but it may skip tokens

• The processing is not filling all the computation time
Solution: The solution is to encapsulate concurrency in

a special kind of process module, thePort monitor, that is
connected to the monitored out-port.Port monitorsoffers the
visualization thread a special interface to access tokens in a
thread-safe way. Internally they have a lock-free data structure
which can be simpler than a lock-free circular buffer since the
visualization can skip tokens.

To manage concurrency and avoid process stalling, thePort
monitor uses two alternated buffers to copy tokens. In a given
time, one of them is the writing one and the other is the reading
one. ThePort monitor state includes a flag that indicates
which buffer is the writing one. ThePort monitor execution
starts by switching the writing buffer and copying the current
token there. Any access from the visualization thread, locks
the buffer switching flag. Port execution uses atry lock to
switch the buffer. So, the process thread is not blocked, it is
just writing on the same buffer while the visualization holds
the lock.

Fig. 8. A port monitor with its switching two buffers

Consequences:Applying this pattern we minimize the
blocking effect of concurrent access on two fronts. On one
side, the processing thread never blocks. On the other, the
blocking time of the visualization thread is very reduced, as
it only lasts a single flag switching.

Unfortunately, the visualization thread may suffer starvation
risk. Not because the visualization thread will be blocked,
but because it may be always reading from the same buffer.
This may happen if every time the processing thread tries to
switch the buffers, the visualization is blocking. Experience
tells us that this effect is not critical and can be avoided
by minimizing the time the visualization thread is accessing
tokens, for example, by copying and releasing them.

5 CONCLUSIONS : FRAMEWORKS GENERATE
DOMAIN-SPECIFIC LANGUAGES

We have presented a framework development process that aims
at generating a domain-specific metamodel with associated
domain-specific languages and a pattern language. In most
cases it is unrealistic to deploy a DSL by designing a full-
fledged domain framework as there are easier and more
direct ways of obtaining the benefits of DSLs. However, our
proposal is the complementary: when designing a framework
you should aim at producing a DSL.
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When building an application framework we are gener-
alizing across a set of systems that belong to a particular
domain. We aim at offering the tools and the conceptual
infrastructure needed to implement all those systems. A well-
designed framework is not just about reuse of code but also
about conceptual reuse: it should present a precise model of
computation and a conceptual framework or domain meta-
model. The white-box components (i.e. base classes) of the
framework are mainly responsible for it.

Our process model is iterative but promotes the separa-
tion of concerns in three different workflows – framework,
metamodel, and patterns – and activities in three different
phases – inception, construction, and formalization. In order to
derive our particular domain metamodel we need to perform
some initial analysis to identify basic requirements, understand
different viewpoints, and choose driving applications in the
inception phase. But we cannot aim at understanding and
modeling the whole domain from the start. The framework
development process is, as most software development, it-
erative by nature. Thus, just as the framework is iteratively
constructed, so should the metamodel and the pattern language
be refined in each iteration.

And once we have a stable domain metamodel, it is
fairly straightforward to provide associated domain-specific
languages. We have the concepts and constructs, all we are
missing is an appropriate notation. The code, together with
the white-box and black-box components it allows to access,
can already be considered an initial – and low-level – DSL.
Adding textual or visual concrete syntax to this well-defined
metamodel is only an implementation detail.

Our main conclusion is that any well-conducted framework
design process will produce a DSL. Therefore, just as
patterns generate architectures[11], frameworks generate
domain-specific languages.
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