Building Industrial-scale Real-world Recommender
Systems

Xavier Amatriain
_ Netflix
xamatriain@netflix.com

Categories and Subject Descriptors: H.3 [Information
Search and Retreival]: Information Filtering

General Terms: Algorithms, Experimentation

Keywords: Recommender Systems, Applications

1. INTRODUCTION

In 2006, Netflix announced the Netflix Prize, a machine
learning and data mining competition for movie rating pre-
diction. We offered $1 million to whoever improved the ac-
curacy of our existing system called Cinematch by 10%. We
conducted this competition to find new ways to improve the
recommendations we provide to our members, which is a key
part of our business. However, we had to come up with a
proxy question that was easier to evaluate and quantify: the
root mean squared error (RMSE) of the predicted rating.

A year into the competition, the Korbell team won the
first Progress Prize with an 8.43% improvement. They re-
ported more than 2000 hours of work in order to come up
with the final combination of 107 algorithms that gave them
this prize. And, they gave us the source code. We looked
at the two underlying algorithms with the best performance
in the ensemble. To put these algorithms to use, we had to
work to overcome some limitations, for instance that they
were built to handle 100 million ratings, instead of the more
than 5 billion that we have, and that they were not built
to adapt as members added more ratings. But once we
overcame those challenges, we put the two algorithms into
production, where they are still used as part of our recom-
mendation engine.

You might be wondering what happened with the final
Grand Prize ensemble that won the $1M two years later.
This is a truly impressive compilation and culmination of
years of work, blending hundreds of predictive models to fi-
nally cross the finish line. We evaluated some of the new
methods offline but the additional accuracy gains that we
measured did not seem to justify the engineering effort needed
to bring them into a production environment.

This example highlights the fact that, besides improv-
ing offline metrics such as the RMSE, recommender systems
need to take into account other practical issues such as scal-
ability or deployment. In this tutorial, we go over some of
those practical issues that many times are as important as
the theory, if not more, in order to build an industrial-scale
real-world recommender system.

Copyright is held by the author/owner(s).
RecSys’12, September 9-13, 2012, Dublin, Ireland.
ACM 978-1-4503-1270-7/12/09.

2. BEYOND RATING PREDICTION

We have discovered through the years that there is tremen-
dous value in incorporating recommendations to personalize
as much as possible. Personalization starts on our home-
page, which consists of groups of videos arranged in hori-
zontal rows. Each row has a title that conveys the intended
meaningful connection between the videos in that group.
Most of our personalization is based on the way we select
rows, how we determine what items to include in them, and
in what order to place those items.

Take as a first example the Top 10 row: this is our best
guess at the ten titles you are most likely to enjoy. Of course,
when we say “you”, we really mean everyone in your house-
hold. It is important to keep in mind that Netflix’ person-
alization is intended to handle a household that is likely to
have different people with different tastes. That is why when
you see your Topl0, you are likely to discover items for dad,
mom, the kids, or the whole family. Even for a single person
household we want to appeal to your range of interests and
moods. To achieve this, in many parts of our system we are
not only optimizing for accuracy, but also for diversity.

Another important element in personalization is aware-
ness. We want members to be aware of how we are adapting
to their tastes. This not only promotes trust in the system,
but encourages members to give feedback that will result in
better recommendations. A different way of promoting trust
with the personalization component is to provide explana-
tions as to why we decide to recommend a given movie or
show. We are not recommending it because it suits our busi-
ness needs, but because it matches the information we have
from you: your explicit taste preferences and ratings, your
viewing history, or even your friends’ recommendations.

Some of the most recognizable personalization in our ser-
vice is the collection of “genre” rows. Each row represents 3
layers of personalization: the choice of genre itself, the sub-
set of titles selected within that genre, and the ranking of
those titles. As with other personalization elements, fresh-
ness and diversity is taken into account when deciding what
genres to show from the thousands possible.

Similarity is also an important source of personalization
in our service. Think of similarity in a very broad sense; it
can be between movies or between members, and can be in
multiple dimensions such as metadata, ratings, or viewing
data. Furthermore, these similarities can be blended and
used as features in other models. Similarity is used in mul-
tiple contexts, for example in response to a member’s action
such as searching or adding a title to the queue.

The goal of recommender systems is to present a number

of attractive items for a person to choose from. This is
usually accomplished by selecting some items and sorting
them in the order of expected enjoyment (or utility). Since
the most common way of presenting recommended items is
in some form of list, such as the various rows on Netflix, we
need an appropriate ranking model that can use a wide
variety of information to come up with an optimal ranking
of the items for each of our members.

If you are looking for a ranking function that optimizes
consumption, an obvious baseline is item popularity. The
reason is clear: on average, a member is most likely to
watch what most others are watching. However, popular-
ity is the opposite of personalization: it will produce the
same ordering of items for every member. Thus, the goal
becomes to find a personalized ranking function that is bet-
ter than item popularity, so we can better satisfy members
with varying tastes. One obvious way to approach this is to
use the member’s predicted rating of each item as an adjunct
to item popularity. At this point, we are ready to build a
ranking prediction model using these two features. For ex-
ample, we could use a simple linear function of the form
form rank(u,v) = wlp(v) + w2r(u,v) + b, where u=user,
v=video item, p=popularity and r=predicted rating

Once we have such a function, we can pass a set of videos
through our function and sort them in descending order
according to the score. You might be wondering how we
can set the weights wl and w2 in our model. In other
words, in our simple two-dimensional model, how do we de-
termine whether popularity is more or less important than
predicted rating? There are at least two possible approaches
to this. You could sample the space of possible weights and
let the members decide what makes sense after many A/B
tests. This procedure might be time consuming and not
very cost effective. Another possible answer involves for-
mulating this as a machine learning problem: select posi-
tive and negative examples from your historical data and let
a machine learning algorithm learn the weights that opti-
mize your goal. This family of machine learning problems
is known as “Learning to rank” and is central to application
scenarios such as search engines or ad targeting.

As you might guess, apart from popularity and rating
prediction, we have tried many other features. Some have
shown no positive effect while others have improved our
ranking accuracy tremendously. On the other hand, many
supervised classification methods can be used for ranking.
There is no easy answer to choose which model will perform
best in a given ranking problem. The simpler your feature
space is, the simpler your model can be. But it is easy to get
trapped in a situation where a new feature does not show
value because the model cannot learn it. Or, the other way
around, to conclude that a more powerful model is not use-
ful simply because you don’t have the feature space that
exploits its benefits.

3. SYSTEMS & ARCHITECTURE

When we design a Recommender System, we need to take
into account under what conditions it will be operated and
deployed. As we saw with the outcome of the Netflix Prize,
issues such as scalability need to be considered. Another
important factor that will determine the feasibility of an ap-
proach is the overall system latency measured as the time
elapsed since the user gives us some feedback to the time
the UI will present a different recommendation that is influ-

enced by that input. The best algorithm will be useless if
the system is unable to respond to user actions in a timely
fashion.

In Netflix, we approach scalability and latency by optimiz-
ing our systems in several ways. We take advantage of the
scalability of the cloud using Amazon Web Services. We also
use Hadoop for distributed data processing, and Cassandra
for efficient distributed storage. Our architecture follows an
“offline-online” pattern to maximize data throughput while
minimizing latency. Heavy data computation jobs that are
not very sensitive to latency are processed offline. These jobs
can be triggered periodically, or in response to user events.
On the other hand, jobs that depend on real-time signals
are processed online by taking advantage of the previously
computed results. A simple an effective for some of these
cases is to design filters that immediately filter out items
such as a movie the user just watched. But, not everything
can be solved with a simple filter. And, it is important to
understand how things like filters can impact algorithms.

4. CONSUMER DATA SCIENCE

The abundance of source data, measurements and associ-
ated experiments allow us to operate a data-driven organi-
zation. Netflix has embedded this aproach into its culture
since the company was founded, and we have come to call it
Consumer (Data) Science. We strive for an innovation cul-
ture that allows us to evaluate ideas rapidly, inexpensively,
and objectively. And, once we test something we want to
understand why it failed or succeeded.

So, how does this work in practice? It is a slight varia-
tion over the traditional scientific process called A/B test-
ing (or bucket testing): (1) Start with a hypothesis: Algo-
rithm/feature/design X will increase member engagement
with our service and ultimately member retention. (2) De-
sign a test: Develop a solution or prototype. Think about
dependent & independent variables, control, and significance.
(3) Execute the test. (4) Let data speak for itself

When we execute A /B tests, we track many different met-
rics. But we ultimately trust member engagement (e.g.
hours of play) and retention. Tests usually have thousands
of members and anywhere from 2 to 20 cells exploring vari-
ations of a base idea. We typically have scores of A/B tests
running in parallel. A/B tests let us try radical ideas or test
many approaches at the same time, but the key advantage
is that they allow our decisions to be data-driven.

An interesting follow-up question that we have faced is
how to integrate our machine learning approaches into this
data-driven A/B test culture at Netflix. We have done this
with an offline-online testing process that tries to combine
the best of both worlds. The offline testing cycle is a step
where we test and optimize our algorithms prior to perform-
ing online A/B testing. To measure model performance of-
fline we track multiple metrics used in the machine learning
community: from ranking measures such as normalized dis-
counted cumulative gain, mean reciprocal rank, or fraction
of concordant pairs, to classification metrics such as accu-
racy, precision, recall, or F-score. We also use the famous
RMSE from the Netflix Prize or other more exotic metrics to
track different aspects like diversity. We keep track of how
well those metrics correlate to measurable online gains in
our A/B tests. However, since the mapping is not perfect,
offline performance is used only as an indication to make
informed decisions on follow up tests.

