
CLAM: A Framework for Efficient and Rapid Development
of Cross-platform Audio Applications

Xavier Amatriain
CREATE

University of California Santa
Barbara

Santa Barbara, CA

xavier@create.ucsb.edu

Pau Arumi
Music Technology Group, UPF

c/Ocata, 1
08003 Barcelona, Spain

parumi@iua.upf.edu

David Garcia
Music Technology Group, UPF

c/Ocata, 1
08003 Barcelona, Spain

dgarcia@iua.upf.edu

ABSTRACT
CLAM is a C++ framework that offers a complete develop-
ment and research platform for the audio and music domain.
Apart from offering an abstract model for audio systems, it
also includes a repository of processing algorithms and data
types as well as a number of tools such as audio or MIDI
input/output. All these features can be exploited to build
cross-platform applications or to build rapid prototypes to
test signal and media processing algorithms and systems.
The framework also includes a number of stand-alone ap-
plications that can be used for tasks such as audio analy-
sis/synthesis, plug-in development or metadata annotation.

In this article we give a brief overview of CLAM’s features
and applications.

Categories and Subject Descriptors
D.2.11 [Software Architectures]: Domain-specific archi-
tectures

General Terms
Design

Keywords
Frameworks, Multimedia, Audio

1. INTRODUCTION
CLAM stands for C++ Library for Audio and Music and

it is a full-fledged software framework for research and appli-
cation development in the audio and music domain. It offers
a conceptual model; algorithms for analyzing, synthesizing
and transforming audio signals; and tools for handling audio
and music streams and creating cross-platform applications.

The CLAM framework is cross-platform. All the code is
ANSI C++ and it is regularly compiled under GNU/Linux,
Windows and Mac OSX.

CLAM offers a processing kernel that includes an infras-
tructure and processing and data repositories. In that sense,
CLAM is both a black-box and a white-box framework. It is
black-box because already built-in components included in
the repositories can be connected with minimum program-
mer effort in order to build new applications. And it is

Copyright is held by the author/owner(s).
MM’06, October 23–27, 2006, Santa Barbara, California, USA.
ACM 1-59593-447-2/06/0010.

white-box because the abstract classes that make up the in-
frastructure can be easily derived to extend the framework
components with new processes or data classes.

CLAM also includes a number of tools for services such as
audio i/o or XML serialization and applications that have
served as a testbed and validation of the framework.

The CLAM infrastructure is a direct implementation of
the 4MS metamodel, which will be explained in the follow-
ing section. In the next sections we will also review the
CLAM repositories, its tools and applications. Please re-
fer to CLAM’s website (www.clam.iua.upf.edu) for further
information, documentation, and downloads.

2. CLAM’S METAMODEL
The Object-Oriented Metamodel for Multimedia Process-

ing, 4MS for short, provides the conceptual framework
(metamodel) for a hierarchy of models of media data pro-
cessing system architectures in an effective and general way.
The metamodel is an abstraction of many ideas found in the
CLAM framework but also of an extensive review of simi-
lar frameworks and collaborations with their authors. Al-
though derived and based in particular for audio and music
frameworks, it presents a comprehensive conceptual frame-
work for media signal processing applications. For a more
detailed description of the metamodel and how it relates to
different frameworks see Xavier Amatriain’s PhD [1] .

The 4MS metamodel is based on a classification of signal
processing objects into two categories: Processing objects
that operate on data and control, and Processing Data ob-
jects that passively hold media content. Processing objects
encapsulate a process or algorithm; they include support for
synchronous data processing and asynchronous event-driven
control as well as a configuration mechanism and an explicit
life cycle state model. On the other hand, Processing Data
objects offer a homogeneous interface to media data, and
support for meta object facilities such as reflection and se-
rialization.

Although the metamodel clearly distinguishes between
two different kinds of objects the managing of Processing
Data constructs can be almost transparent for the user.
Therefore, we can view a 4MS system as a set of Processing
objects connected in a graph called Network.

Processing objects are connected through intermediate
channels. These channels are the only mechanism for com-
municating between Processing objects and with the outside
world. Messages are enqueued (produced) and dequeued
(consumed) in these channels, which act as FIFO queues.



Figure 1: The CLAM framework components

The metamodel offers two kinds of connection mecha-
nisms: ports and controls. Ports transmit data and have a
synchronous data flow nature while controls transmit events
and have an asynchronous nature. By synchronous, we mean
that messages get produced and consumed at a predictable
—if not fixed— rate. And by asynchronous we mean that
such a rate doesn’t exist and the communication follows an
event-driven schema.

But apart from the incoming and outcoming data, some
other entity —probably the user through a GUI slider—
might want to change some parameters of the algorithm.
This control events will arrive, unlike the audio stream,
sparsely or in bursts. In this case the processing object will
receive these events through various (input) control chan-
nels: one for the gain amount, another for the frequency,
etc.

The data flows through the ports when a processing is
fired (by receiving a Do() message).

Processing objects can consume and produce at different
rates and consume an arbitrary number of tokens at each
firing. Connecting these processing objects is not a problem
as long as the ports are of the same data type. The data flow
is handled by a FlowControl entity that figures out how to
schedule the firings in a way that avoids firing a processing
with not enough data in its input ports or not enough space
into its output ports.

3. REPOSITORIES
The Processing Repository contains a large set of ready-to-

use processing algorithms, and the Processing Data Repos-
itory contains all the classes that act as data containers to
be input or output to the processing algorithms.

The Processing Repository includes around 150 differ-
ent Processing classes, classified in the following cate-
gories: Analysis, ArithmeticOperators, AudioFileIO, Au-
dioIO, Controls, Generators, MIDIIO, Plugins, SDIFIO,
Synthesis, and Transformations. Although the repository
has a strong bias toward spectral-domain processing because

of our group’s background and interests, there are enough
encapsulated algorithms and tools so as to cover a broad
range of possible applications.

On the other hand, in the Processing Data Repository we
offer the encapsulated versions of the most commonly used
data types such as Audio, Spectrum, SpectralPeaks, Enve-
lope or Segment. It is interesting to note that all of these
classes make use of the data infrastructure and are there-
fore able to offer services such as a homogeneous interface
or built-in automatic XML persistence.

4. TOOLS
Apart from the infrastructure and the repositories, which

together make up the CLAM processing kernel CLAM also
includes a number of tools that can be necessary to build an
audio application.

4.1 XML
Any CLAM Component can be stored to XML. Further-

more, Processing Data and Processing Configurations make
use of a macro-derived mechanism that provides automatic
XML support without having to add a single line of code
[4].

4.2 GUI
When designing CLAM we had to think about ways of

integrating the core of the framework tools with a graphical
user interface that may be used as a front-end to the frame-
work functionalities. CLAM offers a toolkit-independent
support through the CLAM Visualization Module. This
general Visualization infrastructure is completed by some
already implemented presentations and widgets. These are
offered both for the FLTK toolkit and the Trolltech’s Qt
framework . An example of such utilities are convenient
debugging tools called Plots. Plots offer ready-to-use inde-
pendent widgets that include the presentation of the main
Processing Data in the CLAM framework such as audio,
spectrum, spectral peaks. . .



Processing Object

Composite
Processing Object

Processing 
Network

Data Flow

Control Flow

Port

Control

Figure 2: a 4MS processing network

4.3 Platform Abstraction
Under this category we include all those CLAM tools that

encapsulate system-level functionalities and allow a CLAM
user to access them transparently from the operating system
or platform.

Using these tools a number of services –such as Audio in-
put/output, MIDI input/output or SDIF file support– can
be added to an application and then used on different oper-
ating systems without changing a single line of code.

5. APPLICATIONS
The framework has been tested on —but also has been

driven by— a number of applications. Most of them will be
introduced in the following paragraphs. The last subsection
shows the CLAM visual building tools. Though initially
considered separate applications, they now allow visually
building applications without writing any line of code thus
becoming part of the framework.

5.1 SMS Analysis/Synthesis
The main goal of the application is to analyze, transform

and synthesize back a given sound using the Sinusoidal plus
Residual model [2]. In order to do so the application reads
an XML configuration file, and an audio file or a previously
analyzed sdif file. The input sound is analyzed, transformed
in the spectral domain according to a transformation score
and then synthesized back.

Figure 3: Editing low-level descriptors and segments

with the CLAM Music Annotator

5.2 The Music Annotator
The CLAM Music Annotator [3] is a tool for editing audio

descriptors. The application can be used as a platform for
launching extraction algorithms that analyze the signal and
produce different kinds of descriptors. These processes can
be either local or web services. But most importantly, the
Annotator includes a powerful GUI to manually edit the
result of these algorithms from the audio sample level to the
song level.

5.3 SALTO
SALTO is a software based synthesizer that is also based

on the Sinusoidal plus Residual technique. It implements
a general architecture for these synthesizers but it is cur-



rently only prepared to produce high quality sax and trum-
pet synthesis. Pre-analyzed data are loaded upon initializa-
tion. The synthesizer responds to incoming MIDI data or
to musical data stored in an XML file. SALTO can be used
as a regular synthesizer on real-time as it accepts messages
coming from a regular MIDI keyboard or a MIDI breath
controller.

5.4 Spectral Delay
SpectralDelay is also known as CLAM’s Dummy Test. In

this application it was not important to actually implement
an impressive application but rather to show what can be
accomplished using the CLAM framework. The SpectralDe-
lay implements a delay in the spectral domain, dividing the
audio signal into three bands and allowing for each band to
be delayed separately.

5.5 Others
Apart from the main sample applications CLAM has been

used in many different projects that are not included in the
public version either because the projects themselves have
not reached a stable stage or because their results are pro-
tected by non-disclosure agreements with third parties. In
the following paragraphs we will outline these other users of
CLAM.

Rappid was a testing workbench for the CLAM framework
in high demanding situations. Rappid was tested in a live-
concert situation. Rappid was used as an essential part of
a composition for harp, viola and tape, presented at the
Multiphonies 2002 cycle of concerts in Paris.

The Time Machine project implemented a high quality
time stretching algorithm that was later integrated and in-
cluded in a commercial product. The algorithm uses multi-
band processing and works in real-time. It is a clear example
of how the core of CLAM processing can be used in isolation
as it lacks of any GUI or audio input/output infrastructure.

The Vocal Processor is VST plug-in for singing voice
transformations. This prototype was a chance to test CLAM
integration into VST API and also to check the efficiency of
the framework in highly demanding situations. Most trans-
formations are implemented in the frequency domain and
the plug-in must work in real-time, consuming as few re-
sources as possible.

The CUIDADO IST European project was completely de-
veloped with CLAM. The focus of the project was on au-
tomatic analysis of audio files. In particular rhythmic and
melodic descriptions were implemented. The Open Drama
project was another IST European project that used CLAM
extensively. The project focus was on finding new interactive
ways to present opera. In particular, a prototype applica-
tion was built to create an MPEG-7 compliant description
of a complete opera play.

6. CLAM AS A RAPID PROTOTYPING
ENVIRONMENT

The latest developments in CLAM have brought visual
building capabilities into the framework. These allow the
user to concentrate on the research algorithms and not on
application development. Visual patching is also valuable
for rapid application prototyping of applications and audio-
plug-ins.

CLAM’s visual builder is known as the NetworkEditor
(see Figure 4). It allows to generate an application—or its

Figure 4: NetworkEditor, the CLAM visual builder

processing engine—by graphically connecting objects in a
patch. Another application called Prototyper acts as the
glue between a graphical GUI designing tool (such as qt
Designer) and the processing engine defined with the Net-
workEditor.

7. CONCLUSIONS
As seem in the previous sections CLAM has proven use-

ful in many applications and is becoming more and more
easy to use even before it has reached its first stable 1.0 re-
lease (planned for the end of 2006). And so, we expect new
projects to begin using the framework .

8. ACKNOWLEDGEMENTS
The authors wish to recognize all the people who have

contributed to the development of the CLAM framework. A
non-exhaustive list should at least include Maarten de Boer,
Ismael Mosquera, Xavier Oliver,Miguel Ramı́rez, Enrique
Robledo and Xavi Rubio.

9. REFERENCES
[1] X. Amatriain. An Object-Oriented Metamodel for

Digital Signal Processing with a focus on Audio and
Music. PhD thesis, Universitat Pompeu Fabra,
Barcelona, Spain, 2005.

[2] X. Amatriain, J. Bonada, A. Loscos, and X. Serra.
DAFX: Digital Audio Effects (Udo Zölzer ed.), chapter
Spectral Processing, pages 373–438. John Wiley and
Sons, Ltd., 2002.

[3] X. Amatriain, J. Massaguer, D. Garcia, and
I. Mosquera. The clam annotator: A cross-platform
audio descriptors editing tool. In Proceedings of the
2005 International Symposium on Music Information
Retrieval, ISMIR ’05, 2005.

[4] D. Garcia and X. Amatrian. XML as a means of
control for audio processing, synthesis and analysis. In
Proceedings of the MOSART Workshop on Current
Research Directions in Computer Music, Barcelona,
Spain, 2001.


