Data Mining Methods for Recommender
Systems

Xavier Amatriain, Alejandro Jaimes, Nuria Oliver, and Jo&& Pujol

Abstract In this chapter, we give an overview of the main Data Mininghteiques
that are applied in the context of Recommender Systems. B¥eléscribe common
preprocessing methods such as sampling or dimensionadityction. Next, we re-
view a the most important classification techniques, incigdayesian Networks
and Support Vector Machines. We describe the so pofeagans clustering algo-
rithm and discuss several alternatives. We also presentiasion rules and present
algorithms for an efficient training process. In additionrtroducing these tech-
niques, we survey their uses in Recommender Systems anenpregses where
they have been successfully applied.

1 Introduction

Recommender Systems (RS) typically apply techniques artiadelogies from
other neighboring areas — such as Human Computer Intema@tGl) or Infor-
mation Retrieval (IR). However, most of these systems bed#neir core an algo-
rithm that can be understood as a Data Mining (DM) technidudact, most of
the challenges in Data Mining [65] are also challenges iroRenender Systenis
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Scalability, Dimensionality, Complex and HeterogeneoasDData Quality, Data
Ownership and Distribution, Privacy Preservation, ané&ting Data.

There are many definitions for Data Mining. In the contextto$ tchapter, we
will define Data Mining as the “non-trivial extraction of maagful information
from large amounts of data by automatic or semi-automatians’e Data Mining
uses methods and techniques drawn from machine learnitifigial intelligence,
statistics, and database systems. However most of thesdititnal” techniques
need to be adapted to account for the high dimensionalityhaterogeneity of data
that is pervasive in Data Mining problems.

The process of data mining typically consists of 3 stepsiedout in succession:
Data Preprocessin{b3], Data AnalysisandResult Interpretatiorfisee Figurel).

Data
Distance Measures (2.1)
Data Preprocessing Sampling (2.2}
. ) i duct PCA (2.3.1)
Dimensionality Reduction 5VD (2.3.2)
kNN (3.1}
Decision Trees (3.2)

Rules (3.3}

Prediction { Classification Bayesian Networks (3.4}
SVM (3.6)
ANN (3.5)
Analysis Association Rule Mining (5)

. k-means (4.1}
Descnption )
) Density-based (4.2)
Clustering

Message-passing (4.2}
Hierarchical (4.2)

Interpretation

Fig. 1: Main steps and methods in a Data Mining problem, wliirt correspon-
dence to chapter sections.

We will analyze some of the most important methods for datgpocessing in
Section2. In particular, we will focus on sampling, dimensionaligduction, and
the use of distance functions because of their significanddlzeir role in recom-
mender systems.
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We usually distinguish two kinds of methods in the analysppredictiveand
descriptive Predictive methods use a set of observed variables togbriedire or
unknown values of other variables. Prediction methodsuthetlassification re-
gressionanddeviation detectionDescriptive methods focus on finding meaningful
patterns that help understand and interpret the data. Tiheseeclustering asso-
ciation rule discovenandpattern discoveryBoth kinds of methods can be used in
the context of a recommender system.

In Sections3 through5, we provide an overview introduction to the analysis
methods that are most commonly used in Recommender Systéassification,
clustering and association rule discovery (see Fidufer a detailed view of the
different topics covered in the chapter).

Note that this chapter does not intend to give a thorougleveeff Data Mining
methods, but rather to highlight the impact that Data Miratgprithms have in the
Recommender Systems field, and to provide an overview of ¢iyeData Mining
techniques that have been successfully used. We shalt theemterested reader to
Data Mining textbooks (see [25, 65], for example) or the nfomised references
that are provided throughout the chapter. Most of the aflgor$ and techniques
presented in this chapter are also implemented in genernabpe machine learning
frameworks such as Weka [66] or Torch [17], or even mathersatnd statistical
packages such as Matl&b [64] or Octave [22].

2 Data Preprocessing

We definedataas a collection obbjectsand theirattributes where an attribute is
defined as a property or characteristic of an object. Otherasaor object include
record, item, point, sample observationor instance An attribute might be also be
referred to as &ariable field, characteristic or feature

There are different types of data with attributes of variatlire. In addition, real-
life data typically needs to bereprocessede.g.cleansed, filtered, transformed) in
order to be used by the machine learning techniques in thiysssatep. There
might be missing points, duplicated data, or noise, folainse.

In this section, we focus on three issues that are of paaticaiportance when
designing a recommender system. First, we review diffesaniiarity or distance
measures between data points or collections of data pdietst, we discuss the
issue of sampling as a way to reduce the number of items inlaegg collections
while preserving its main characteristics, or as a way tassp atraining and
testingdata set. Finally, we describe the most common techniquesdiace the
dimensionality of the data.
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2.1 Similarity Measures

We definesimilarity as a numerical measure — often falling in {Bel] range — of
how alike two items are. Having an appropriate similaritpdtion is a key issue
for many data mining algorithms. We usually refer to thstancefunction,d, as a
numerical measure of how different two items are.

The most common distance measure is the Euclidean distance:

d(xy) = ,/kz (% —Yi)? 1)
=1

wheren is the number of dimensions (attributes) apandy are thek" attributes
(components) of data objectandy, respectively. Note that in order to compute the
Euclidean distance, it is necessary to normalize the datzies differ.

The Minkowski Distance is a generalization of Euclideant@ise:

n
d06y) = (3 =yl @)
=1
wherer is the degree of the distance. Depending on the valug tfe generic
Minkowski distance is known with specific names: et 1, thecity block (Man-
hattan taxicabor L1 norm) distance; For = 2, theEuclideandistance; For — oo,
the supremun{Lmax Normor L, norm) distance, which corresponds to computing
the maximum difference between any dimension of the datectd]
The Mahalanobis distance is defined as:

d(xy) =/ (x—y)o-H{x—y)T 3)

whereo is the covariance matrix of the data.

Another very common approach is to consider items as doctweetors of an
n-dimensional space and compute their similarity as thmeas the angle that they
form:

(xey) @)
X111yl

wheree indicates vector dot product afid|| is the norm of vectox. This similarity
is known as theosine similarityor theL2 Norm

The similarity between items can also be given by tleeirelationwhich mea-
sures the linear relationship between objects. While tlaeeeseveral correlation
coefficients that may be applied, tiRearson correlationis the most commonly

used: S(xy)
_ 22Xy
Pearsortx,y) = O X O g (5)

COiX, y) =

, WhereZ is the covariance of data poitsandy ando is their standard deviation.
Finally, several similarity measures have been propos#teicase of items that
only have binary attributes. First, the following quartitiare computedl01 = the
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number of attributes wherewas 0 andy was 1,M10 = the number of attributes
wherex was 1 andy was 0,M00 = the number of attributes whexavas 0 and/ was
0, M11 = the number of attributes wherevas 1 and/ was 1.

From those quantities we can compute:

1. TheSimple Matchingoefficient (SMC):
numberofmatches M11+ MO0

SMC = imbero fattributes MOL+ M10+ MO0+ M1l ©
2. TheJaccardcoefficient (JC):
M11
JC= 7
MO01+4+M10+M11 )

3. TheExtended JaccardTanimotg coefficient (EJC): It is a variation of JC for
continuous or count attributes.
Xeoy

d:
X2+ ][> = x ey

(8)

2.1.1 Similarity Measures in Recommender Systems

The most common approach to collaborative filtering in Rez@mder Systems is
to use thekNN classifier that will be described in Secti@nl. This classification
method — as most classifiers and clustering techniques -gidyhdependent on
defining an appropriate similarity measure.

Recommender Systems have traditionally used either theecssnilarity (see
Eq. 4) or the Pearson correlation (see E5).— or one of their many variations
through, for instance, weighting schemes — as the simjlami¢asure. However,
most of the other distance measures previously revieweg@ssible in this con-
text. Spertuset al. [62] did a large-scale study to evaluate six different samiti
measures in the context of the Orkut social network. Althotingir results might be
biased by the particular setting of their experiment, inigiesting to note that the
best response to recommendations were to those generatgdhescosine similar-
ity. Lathia et al. [44] also carried out a study of several similarity measuvhsre
they concluded that, in the general case, the predictionracg of a recommender
system wasot affected by the choice of the similarity measure. As a matfer
fact and in the context of their work, using a random simijameasure sometimes
yielded better results than using any of the well-known apphes.

2.2 Sampling

Sampling is the main technique used in data mining for selga subset of rele-
vant data from a large data set. It is used both in the prepsiog and final data
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interpretation steps. Sampling may be used because pingéke entire data set
is computationally too expensive. It can also be used tatetesgining andtesting
datasets. In this case, the training dataset is used totleaparameters or configure
the algorithms used in the analysis step, while the testatgs@t is used to evalu-
ate the model or configuration obtained in the training phasking sure that it
performs well {.e. generalizeswith previously unseen data.

The key issue to sampling is finding a subset of the origint det that isepre-
sentative-i.e. it has approximately the same property of interest — of thieeeget.
The simplest sampling techniqueradom samplingwhere there is an equal prob-
ability of selecting any item. However more sophisticatpdraaches are possible.
For instance, irstratified samplinghe data is split into several partitions based on
a particular feature, followed by random sampling on eactitfman independently.

The most common approach to sampling consists of using sagnpithout re-
placementWhen an item is selected, it is removed from the populatitowever, it
is also possible to perform samplingth replacementwhere items are not removed
from the population once they have been selected, allovanthe same sample to
be selected more than once.

Itis common practice to use standard random sampling wittegplacement with
an 80/20 proportion when separating the training and testing skts This means
that we use random sampling without replacement to seleXt @0the instances
for the testing set and leave the remaining 80% for trainkhote that the 8020
proportion should be taken as a rule of thumb: It is geneth#ycase that any value
over 2/3 for the training set is appropriate.

Sampling can lead to an over-specialization to the pagriaivision of the train-
ing and testing data sets. For this reason, the trainingegeos repeateld times as
follows: the training and test sets are created from thermalglata set, the model
is trained using the training data and tested with the exasiplthe test set. Next,
different training/test data sets are selected to statt#i@ing/testing process again
that is repeated times. Finally, theaverageperformance of th& learned models
is reported.

This process is known asross-validation There are several cross-validation
techniques. Irepeated random sampling standard random sampling process is
carried outn times. Inn-Fold cross validationthe data set is divided into folds.
One of the folds is used for testing the model and the remgimin1 folds are used
for training. The cross validation process is then repeatedes with each of tha
subsamples used exactly once as validation data. Finlalyeave-one-out (LOO)
approach can be seen as an extreme casd-ofd cross validation whenmeis set to
the number of items in the data set. Therefore, the algostm run as many times
as data points using only one of them as a test each time.utdhbe noted, though,
that as Isakssoet al.discuss in [40], cross-validation may be unreliable untees
data set is sufficiently large.
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2.3 Reducing Dimensionality

It is common in Recommender Systems to have not only a dataigefeatures
that define a high-dimensional space, but also very spaifseriation in that space
—i.e. there are values for a limited number of features per objewt. notions of
density and distance between points, which are criticacfostering and outlier
detection, become less meaningful in highly dimensionakep. This is known
as theCurse of DimensionalityDimensionality reduction techniques, as the ones
reviewed in this section, help overcome this problem by ectivvg the original high-
dimensional space to a lower-dimensionality space. Intaadisome algorithms
not only address the problems of data sparsity, but they lalisg in welcomed
side-effects such a reduction in the noise or improved cdatipmal efficiency.

In the following, we summarize the two most relevant dimenality reduction
algorithms in the context of Recommender SysteRmsicipal Component Analysis
(PCA)andSingular Value Decomposition (SVO)hese techniques have become so
popular (see.3.3 that they are considered as independent approaches tarnReco
mender Systems in themselves. However, they can be usedrapragessing step
for any of the other techniques that will be reviewed in thiauter.

2.3.1 Principal Component Analysis

Principal Component Analysis (PCA) [41] is a classicalistatal method to find
patterns in high dimensionality data sets. PCA allows taioban ordered list of
components that account for the largest amount of the wegifmom the data in
terms of least square errors: The amount of variance caplyrthe first component
is larger than the amount of variance on the second compamehnso on. We can
reduce the dimensionality of the data by neglecting thosepaments with a small
contribution to the variance.

Given a data matrid,.m of n samples withm attributes (dimensions) we can
perform the principal component analysis using the algoriin listing 1.

Figure2 shows the PCA analysis to a two-dimensional point cloud gegad by
a combination of Gaussians. After the data is centered, fineipal components
are obtained and denoted byandu,. Note that the length of the new coordinates
is relative to the energy contained in their eigenvectoreréfore, for the partic-
ular example depicted in Fi, the first component; accounts for 8%% of the
energy, which means that removing the second companenbuld imply losing
only 16.5% of the information.

The rule of thumb is to choosd so that the cumulative energy is above a certain
threshold, typically 90%. PCA allows us to retrieve the ora data matrix by pro-
jecting the data onto the new coordinate sys¥m,, = Xy.cmW'mx m'. The new
data matrixX’ contains most of the information of the originawith a dimension-
ality reduction ofm—n.

Although PCA is a powerful technique, it does have importanitations. PCA
relies on the empirical data set to be a linear combinati@aafrtain basis. For non-
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Algorithm 1 PCA algorithm

1: Substract the meafror PCA to work properly, the mean of each of the data dinwerssimust

l{)e ze}ro. Thus the mean is subtracted from each attributen@l Aj = A — 1 5 Aj,Vj €
1.m

2: Covariance matrixCompute the covariance matrix of daacentered at the origin & =
rllATA. The covariance matri€ will be a square matrix of dimensionality.

3: Calculate Eigenvectors and Eigenvalu€ompute the matri¥ of eigenvectors which diag-
onalize the covariance matri asV 1CV = D, whereV contains the eigenvector and the
diagonal ofD contains the eigenvalue$A;...Am}).

4: Rearrange eigenvectors and eigenvalu@ace the eigenvectors are computed — which are the
principal components of the analysis, they are sorted imedsing value of their eigenval-
ues and arranged in a mathiX of dimensionalitym: The first principal component — which
captures most of the data variation — is the eigenvector théthighest eigenvalue.

5: Compress the dat@ he dimensionality of the principal component matfixcan be reduced
by keeping only the firsii’ eigenvectorsW’). The loss of information by discarding an eigen-

vector | is the fraction of the eigenvector’'s energy tha%?%, where)| is the eigenvalue of
the j-th eigenvector.

Fig. 2: PCA analysis of a two-dimensional point cloud fromoanbination of Gaus-
sians. The principal components derived using PCSiaendu,, whose length is
relative to the energy contained in the components.
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linear data, generalizations of PCA have been proposedl, asi&ernel PCA7].
Another important assumption of PCA is that the originabdset has been drawn
from a Gaussian distribution. When this assumption doealottrue, as it is the
case of multi-modal Gaussian or non-Gaussian distribgfitirere is no warranty
that the principal components are meaningful.

2.3.2 Singular Value Decomposition

Singular Value Decomposition [34] is a powerful techniqaedimensionality re-
duction that is related to PCA. The key issue in an SVD decaitipa is to find a
lower dimensional feature space where the new featuressept “concepts” and
the strength of each concept in the context of the colledsocomputable. Be-
cause SVD allows to automatically derive semantic “corgdpta low dimensional
space, it is the basis ¢ditent-semantic analysi$7], a very popular technique for
text classification in Information Retrieval .

The core of the SVD algorithm lies in the following theoretrislalways possible
to decompose a given matriinto A= UAVT. Given then x m matrix dataA (n
items, m features), we can obtain anx r matrixU (n items,r concepts), am x r
diagonal matrixA (strength of each concept), and mnx r matrixV (m featuresy
concepts). Figur8 illustrates this idea.

m r
(features) (concepts)
—— —— m
r (features)
—r— r— e
N
= n u [ Xrd| A | X v r
(itemns) A (items) { . (concepts)

Fig. 3: lllustrating the basic Singular Value Decompositibheorem: an itenx
features matrix can be decomposed into three different @meisem x concepts, a
concept strength, and a concepfeatures.

TheA diagonal matrix contains ttengular valueswhich will always be positive
and sorted in decreasing order. Thenatrix is interpreted as the “item-to-concept”
similarity matrix, while theV matrix is the “term-to-concept” similarity matrix.

In order to compute the SVD of a rectangular matixwe consideAAT and
ATA. The columns olJ are the eigenvectors &A", and the columns o¥ are
the eigenvectors oA A. The singular values on the diagonalofare the positive
square roots of the nonzero eigenvalues of Poth andAT A. Therefore, in order
to compute the SVD of matrik we first computd asAAT andD asAT A and then
compute the eigenvectors and eigenvaluegfandD.
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Ther eigenvaluesiA are ordered in decreasing magnitude. Therefore, the orig-
inal matrixA can be approximated by simply truncating the eigenvaluagatenk.
The truncated SVD creates a raklpproximation toA so thatA, = Uk/\kaT. A is
theclosestrankk matrix toA. The term “closest” means thAf minimizes the sum
of the squares of the differences of the elements ahdAy. The truncated SVD is
a representation of the underlying latent structure in acedk-dimensional space,
which generally means that the noise in the features is exfuc

2.3.3 Dimensionality Reduction in Recommender Systems

Sparsity and theurse of dimensionalitgre recurring problems in Recommender
Systems. Even in the simplest setting, we are likely to haspaase matrix with
thousands of rows and columnise( users and items), most of which are zeros.
Therefore, dimensionality reduction comes in naturallppiing dimensionality
reduction makes such a difference and its results are sotlgig@pplicable to the
computation of the predicted value, that this is now cornrsidéo be an approach to
Recommender Systems design, rather than a preprocessimicgee. As a matter
of fact, the two preferred approachesto collaborativefiiteare nowadays standard
kNN and its many variations, and dimensionality reductian$VD [].

Earlier works, however, used PCA as a way to reduce dimeabipin a col-
laborative filtering setting. Goldberg al. proposed an approach to use PCA in the
context of an online joke recommendation system [33]. Thgstem, known as
Eigentasté, starts from a standard matrix of user ratings to items. Theg select
theirgaugeset by choosing the subset of items for which all users hatrayta his
new matrix is then used to compute the global correlationimathere a standard
2-dimensional PCA is applied.

The use of SVD as tool to improve collaborative filtering hagib known for
some time. Sarwaet al.[60] describe two different ways to use SVD in this context.
First, SVD can be used to uncover latent relations betwestomers and products.
In order to accomplish this goal, they first fill the zeros i thser-item matrix
with the item average rating and then normalize by subtigdifie user average.
This matrix is then factored using SVD and the resulting dgoasition can be
used — after some trivial operations — directly to compugepttedictions. The other
approach is to use the low-dimensional space resulting fre8VD to improve
neighborhood formation for later use irkllN approach.

As described by Sarwaat al. [59], one of the big advantages of SVD is that
there are incremental algorithms to compute an approxihdgeomposition. This
allows to accept new users or ratings without having to rguamthe model that
had been built from previously existing data. The same ideslater extended and
formalized by Brand [11] into an online SVD model. The userafremental SVD
methods has recently become a commonly accepted apprdachitafsuccess in

2 http://eigentaste.berkeley.edu
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the Netflix Prize3. The publication of Simon Funk’s simplified incremental SVD
method [31] marked an inflection point in the contest. Site@ublication, several
improvements to SVD have been proposed in this same corsegtRaterek’s en-
sembles of SVD methods [50] or Kuruetal. evaluation of SVD parameters [43]).

Finally, it should be noted that different variants of MatRactorization (MF)
methods such as the Non-negative Matrix Factorization (NHNKlave also been
used [67]. These algorithms are, in essence, similar to SNHe. basic idea is to
decompose the ratings matrix into two matrices, one of witichtains features
that describe the users and the other contains featureskdegdhe items. Matrix
Factorization methods are better than SVD at handling thesimg values by in-
troducing a bias term to the model. However, this can alsoamelled in the SVD
preprocessing step by replacing zeroes with the item agefdagte that both SVD
and MF are prone to overfitting. However, there exist MF vasgasuch as the Regu-
larized Kernel Matrix Factorization [], that can avoid tissue efficiently. The main
issue with MF — and SVD — methods is that it is unpractical torepute the fac-
torization every time the matrix is updated because of cdatfmnal complexity.
However, Rendle and Schmidt-Thieme [56] propose an onliathad that allows
to update the factorized approximation without recomptire entire model.

3 Classification

A classifier is a mapping between a feature space and a labet sphere the fea-
tures represent characteristics of the elements to ofaasif the labels represent the
classes. A restaurant recommender system, for exampldyecamplemented by a
classifier that classifies restaurants into one of two categ¢good, bad) based on
a number of features that describedtd, quality of food on a scale from 1 to 10,
atmosphere on a scale from 1 to 10, etc.). A particular resta® will be repre-
sented by a feature vectBV; =< fvy, fvo,, fv, >. In this particular example, the
classifier is binary because it produces only two labelsdgodiad.

There are many types of classifiers, but in general they itfilee besupervised
or unsupervised

e Insupervised classification, a set of labels or categasiksown in advance (e.qg.,
we know there are two types of restaurants, good and bad) arithve a set of
labeled examples which constitute a training set (we knowdwance which
restaurants are good and which are bad). The task is therato &&mapping
(boundary, or function) that can separate the instancesd(ffom bad restau-
rants) so that if a new unseen instance (restaurant) ismtessto the classifier it
can predict its category (good, bad).

e In unsupervised classification, the labels or categoriesiaknown in advance
and the task is to suitably (according to some criteria) migathe elements at
hand (e.g., given a list of restaurants, put them into gragussidering all or

3 http://www.netflixprize.com
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some of their characteristics: quality of food, price, lbma, etc.). Following

this example, an unsupervised learning algorithm migtaalier two groups of
restaurants in a list where it might turn out that one grougpdrdy French restau-
rants and the other one only American restaurants althcuglabels “French”
and “American” did not exist in the feature vectors. Unswsad classification
is accomplished by means ofusteringalgorithms, which will be covered in
sectiord.

In essence, then, classifiers try to find boundary functiorseparate or group
elements into either known categories or into groups oflam@lements. In this
section we describe several algorithms to learn supendiessifiers and will be
covering unsupervised classification in sectdon

3.1 Nearest Neighbors

Instance-based classifienrk by storing training records and using them to predict
the class label of unseen cases. A trivial example is thealedaote-learner This
classifier memorizes the entire training set and classifigsibthe attributes of the
new record match one of the training examples exactly.

A more elaborate, and far more popular, instance-basesifiéaigs theNearest
neighbor classifiekNN) [19]. Given a point to be classified, the&N classifier
finds thek closest pointsr{earest neighbojsrom the training records. It then as-
signs the class label according to the class labels afetsest-neighborsThe un-
derlying idea is that if a record falls in a particular neightttood where a class label
is predominant it is because the record is likely to belonth&b very same class.

Given a query poing for which we want to know its clask and a training
setX = {{xy,l1}...{xn}}, wherex; is the j-th element andj; is its class label, the
k-nearest neighbors will find a subsét= {{y1,l1}...{yk}} such thaty € X and
z'{d(q,yk) is minimal.Y contains thek points in X which are closest to the query
pointg. Then, the class label ofis| = f({l1...I}).

The distance measutkis usually the Euclidian distance. However, other mea-
sures, such as the ones reviewe@if, can be applied depending on the data. In
order to prevent the distance measure from being dominatesbime of the at-
tributes, it is common-practice to scale attributes. Femrtiore, and in order to avoid
counter-intuitive results, we sometimes normalize vectounit length.

There are different candidates for the functioby which the new class label is
assigned. The most widely used is the majority vote rule tigthbroken at random.
With majority vote, the query poirg is assigned to the most common label of its
nearest neighbors. A variation of the majority vote is togheithe votes according
to the distance between the training poiptsand the query poing; the vote of the
closest neighbor counts more than the vote of the furthdsis-ig one of preferred
approach when usingNN in a collaborative filtering setting. Another strategy is
to use the consensus rule. Unlike the majority vote rulesensus only assigns the
label if and only if allk neighbors have the same class label. This technique islusefu
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Fig. 4: Example of k-Nearest Neighbors. The left subfigumhthe training points
with two class labels (circles and squares) and the quenmnt ffas a triangle). The
right sub-figure illustrates closest neighborhood Kot 1 andk = 7. The query
point would be classified as square foe 1, and as a circle fok = 5 according to
the simple majority vote rule. Note that the query points yuas$ on the boundary
between the two clusters.

to discriminate the classification in termsa#rtainty, however, many query points
might remain unclassified due to the strictiveness of thiemum.

Perhaps the most challenging issu&iNN is how to choose the value &f If k
is too small, the classifier will be sensitive to noise paist if k is too large, the
neighborhood might include too many points from other @das3he right plot in
Fig. 4 shows how differenk yields different class label for the query pointki&= 1
the class label would beircle whereask = 7 classifies it asquare Note that the
query point from the example is on the boundary of two clysted therefore, it is
difficult to classify.

kNN classifiers are amongst the simplest of all machine legraigorithms.
SincekNN does not build models explicitly it is consideredbay learner Unlike
eager learners such as decision trees or rule-based sysfehslassifiers leave
many decisions to the classification step. Therefore, ifj@sg unknown records is
relatively expensive.

3.1.1 Nearest Neighbors in Recommender Systems

Nearest Neighbor is one of the most common approaches tabcodtive filter-
ing (and therefore to designing a recommender systems).rAateer of fact, any
overview on Recommender Systems — such as the one by Addosaaiad Tuzhilin
[1] = will include an introduction to the use of nearest ndigts in this context.

One of the advantages of this classifier is that it is con@lytuery much related
to the idea of collaborative filtering: Finding like-mindasders (or similar items) is
essentially equivalent to finding neighbors for a given wsen item.
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The other advantage is that, being #i¢N classifier a lazy learner, it does not
require to learn and maintain a given model. Therefore, iimciple, the system can
adapt to rapid changes in the user ratings matrix. Unfotaipeahis comes at the
cost of recomputing the neighborhoods and therefore thigasity matrix.

ThekNN approach, although simple and intuitive, has shown ga@odracy re-
sults and is very amenable to improvements. As a matter ofifacsupremacy as
thede factostandard for collaborative filtering recommendation heg baen chal-
lenged recently by approaches based on dimensionalitetiedusuch as the ones
reviewed in Sectioi2.3,

The generakNN approach to collaborative filtering has experienced owapr
ments in several directions. For instance, in the contexhefNetflix Prize, Bell
and Koren [7] propose a method to remalebal effectsuch as the fact that some
items may attract users that consistently rate lower. Th&y@opose an optimiza-
tion method for computing interpolating weights once thigghkorhood is created.

3.2 Decision Trees

Decision trees [55] are classifiers on a target attributecass) in the form of a
tree structure. The observations (or items) to classifcaneposed of attributes and
their target value. The nodes of the tree can betemjsion nodesn these nodes a
single attribute-value is tested to determine to which binaof the subtree applies.
Or b) leaf nodesvhich indicate the value of the target attribute.

Figure5 is a decision tree of the data contained in Tablén this toy example,
the goal is to classify potential pizza-lovers as a functibthree attributes (marital
status, annual income and interest in sports). The treetlvgh be used to predict
the risk of future borrowers based on historic data.

Sports’ farjMarital StatugAnnual incomgLikes Pizza
Yes Divorced 90K Yes
No Single 125K No
Yes Married 100K No
Yes Married 60K No

sub:similarity ~ Yes Married 75K No
Yes Single 105K No
Yes Single 85K Yes
Yes Single 90K Yes
No Divorced 220K No
No Married 120K No

Table 1: Attributes and target attribute from the obseorei

There are many algorithms for decision tree induction: Hudgorithm, CART,
ID3, C4.5, SLIQ, SPRINT to mention the most common. We bridégcribe Hunt’s
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Yes

Marital status?

Married

No pizza

(3/100%)

Not married

Annual income?

No pizza

(3/100%)

100K > 100 K
Likes pizza No pizza
(3/100%) (1/100%)

Fig. 5: Example of a Decision Tree for the data summarizedlvéll

Algorithm — used in the toy example — for it is one of the eatliand easiest to
understand. The recursive Hunt algorithm is describedstirg 2.

The algorithm relies on th&est conditionapplied to a given attribute that dis-
criminates the observations by their target values. Onegdltition induced by the
test condition has been found, the algorithm is recursikegheated until a partition
is empty or all the observations have the same target valuggl 5 there are three
test conditions, one for each attributed in the data. ThetBst conditionwas to
ask for sport’'s supporters since there is no observationmafresports’s fan liking
pizza. Applying the condition will create the split of thetdan two new nodes: a)
non sports’ fans with three instances and b) sports’ faris séten instances. Why
was sports chosen to do the split instead of another athBecause the partition
yielded by sports maximized the information gain, definetbsws,

oy

N(vj)I(vj)

A = | (parent) — N

]

(9)

1

wherek; are values of the attribute N is the number of observations; is the
j-th partition of the observations according to the valueattributei. Finally, |
is a function that measures noitepurity. There are different measures of impu-
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Algorithm 2 Hunt algorithm

: Do = {(Xi1, ..., Xip, Yi), Vi € N}
. (theN observations to classify i, Y; is the target attribute of theth instance or observation)

N =

. ¢ (the current node)

. if same value for aV; in Dy then
markc as leaf node with valug
9: else
10: usetest conditiorto split Dy in Q different sets of observatiorid;..Dyq
11:  according the values of an attribyjt;;
12:  forieQdo

3
4:
5: procedure Hunt(Dy, )
6:
7
8

13: HuntQyi,i)
14:  end for

15: end if

16:

17: end procedure

rity: Gini Index, Entropy and misclassification error are ttnost common in the
literature. We used misclassification to build up the exandepicted in Figs. We
computed the informatiodl for each attribute and selected sports since it maxi-
mized the information gain. Then, the original observegiare split into two new
nodes and the process is repeated.

Note that theest conditiorselection process uses a greedy hill-climbing strategy.
Decision trees can, therefore, get stuck in a local optinsdsification. Thdest
conditionis also sensitive to the attribute type (i.e. nominal, oatlicontinuous...)
and whether we decide to do a 2-way split or a multi-way splitwever, these
two issues are not uncorrelated. For instance, if we bas@antition on nominal
attributes we will favor a multi-way split using as many fi#shs as distinct values.
We have different ways to handle splitting conditions basedontinuous attributes.
We can discretize any continuous attribute to form an ofdattaibute following
either a static or dynamic approach. In the static, we digerehe attribute once
at the beginning. In the dynamic, ranges can be found by eqteal/al bucketing,
equal frequency bucketing, or clustering.

We already mentioned that the decision tree stops oncesgireaitions belong to
the same class (or the same range in the case of continuobstatt). This implies
that the impurity of the leaf nodes is zero. For practicakoges, however, most
decision trees implementations use pruning by which a nedwifurther split if
its impurity measure or the number of observations in theerave below a certain
threshold. This early termination criteria are used to iowprthe efficiency of the
algorithm. Early termination avoids too fine-grained spthat might be irrelevant
in the prediction stage or could be over-fitting to the tnagndata.

The main advantages of building a classifier using a decis@mis that it is
inexpensive to construct and it is extremely fast at clgsgif unknown instances.
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Another appreciated aspect of decision tree is that theyearsed to produce a set
of rules that are easy to interpret (see sec8d) while maintaining an accuracy
comparable to other basic classification techniques.

3.2.1 Decision Trees in Recommender Systems

Decision trees may be used in a model-based approach foomneender system.
One possibility is to use content features to build a degitiee that models all the
variables involved in the user preferences. Boeizal. [9] use this idea to construct
a Decision Tree using semantic information available feritems. The tree is built
after the user has rated only two items. The features for etitle items are used to
build a model that explains the user ratings. They use tlogrnmdtion gain of every
feature as the splitting criteria. It should be noted th#tialgh this approach is
interesting from a theoretical perspective, the precithay report on their system
is worse than that of recommending the average rating.

As it could be expected, it is very difficult and unpracticaliuild a decision
tree that tries to explain all the variables involved in tleeidion making process.
Decision trees, however, may also be used in order to modaltacplar part of
the system. Chet al.[14], for instance, present a Recommender System for online
purchases that combines the use of Association Rules (stiers®) and Decision
Trees. The Decision Tree is used as a filter to select whicts sé@uld be targeted
with recommendations. In order to build the model they @eatandidate user set
by selecting those users that have chosen products fromea gategory during
a given time frame. In their case, the dependent variabléddding the decision
tree is chosen as whether the customer is likely to buy newyats in that same
category.

3.3 Ruled-based Classifiers

Rule-based classifiers classify data by using a collectfdrifa .. then ...” rules.
The ruleantecedenbr condition is an expression made of attribute conjunetion
The ruleconsequeris a positive or negative classification.

We say that a rule coversa given instance if the attributes of the instance
satisfy the rule condition. We define theverageof a rule as the fraction of records
that satisfy its antecedent. On the other hand, we defirredsracyas the fraction
of records that satisfy both the antecedent and the consedte say that a clas-
sifier containgmutually exclusive rules the rules are independent of each other —
i.e.every record is covered by at most one rule. Finally we saptltgaclassifier has
exhaustive rule#f they account for every possible combination of attribuédues
—i.e. each record is covered by at least one rule.

In order to build a rule-based classifier we can follow a direethod to extract
rules directly from data. Examples of such methods are RREBRIEE CN2. On the
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other hand, it is common to follow an indirect method andauttrules from other
classification models such as decision trees or neural meswo

For instance the rules derived from applying a decision3reethe data of Table
1 would be:

1. IF NOT Sports’ fanTHEN NOTPizza (coverage 30%, accuracy 100%)
2. IF Sports’ fanAND MarriedTHEN NOTPizza (coverage 30%, accuracy 100%)
3. IF Sports’ fanAND NOT Married THEN Pizza (coverage 40%, accuracy 75%)

Note that we excluded the annual income attribute for the séklustrating the
coverage and accuracy. The advantages of rule-basedfielassire that they are
extremely expressive since they are symbolic and operdltethg attributes of the
data without any transformation. Rule-based classifierd,key extension decision
trees, are easy to interpret, easy to generate and they assifglnew instances
efficiently.

3.3.1 Rule-based Classifiers in Recommender Systems

In a similar way to Decision Tress, it is very difficult to bdiia complete recom-
mender model based on rules. As a matter of fact, this methadtivery popular
in the context of recommender systems because derivingédaded system means
that we either have some explicit prior knowledge of the sieai making process
or that we derive the rules from another model such a decisé@n However a rule-
based dystem can be used to improve the performance of a neeoder system by
injecting partial domain knowledge or business rules.

Andersonet al. [3], for instance, implemented a collaborative filtering situ
recommender system that improves its performance by apgpéyiule-based system
to the results of the collaborative filtering process. If aruates an album by a given
artist high, for instance, predicted ratings for all othkauans by this artist will be
increased.

Guttaet al.[26] implemented a rule-based recommender system for Tecon
In order to do, so they first derived a C4.5 Decision Tree thalhén decomposed
into rules for classifying the programs.

Basuet al. [5] followed an inductive approach using tRepper[16] system to
learn rules from data. They report slightly better resulteew using hybrid con-
tent and collaborative data to learn rules than when folowa pure collaborative
filtering approach.

3.4 Bayesian Classifiers

A Bayes classifier [30] is a probabilistic framework for saly classification prob-
lems. Itis based on the definition of conditional probap#ihd the Bayes theorem.
The Bayesian school of statistics uses probability to sgreuncertainty about the
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relationships learned from the data. In addition, the cphoépriors is very im-
portant as they represent our expectations or prior knaydedout what the true
relationship might be. In particular, the probability of adel given the datgps-
terior) is proportional to the product of théelihood times theprior probability
(or prior). The likelihood component includes the effectloé data while the prior
specifies the belief in the model before the data was observed

Bayesian classifiers make use of Bayes’ theorem, that seldtdhe previous
concpts, and is given by:

P(D[M)P(M)

(10)
whereM is a model (or hypothesis) afalis the dataP(M) is the prior probability
of M, i.e. the probability thaM is correct before the dafa is observedP(D|M)
is the conditionalprobability of seeing dat® given that modeM is true. This is
called thelikelihood of the data;P(D) is the marginal probability of the data and
P(M|D) is theposteriorprobability,i.e. the probability that modeVi is true, given
the data.

If we assume an exhaustive set of mutually exclusive mddglgve obtain:

P(D) = 3 P(D,Mj) = ¥ P(D|Mi)P(M)) (11)

Note thatP(D) in Equation10is a normalizing constant that only depends on the
data and in most cases does not need to be computed exphAdtlyresult, Bayes’
theorem is typically simplified t&(M|D) O P(D|M)P(M).

Bayesian classifiers consider each attribute and claskdalfeontinuous or dis-
crete) random variables. Given a record wWitlattributeg A, Ay, ..., An), the goal is
to predict clas€ by finding the value o€ that maximizes the posterior probability
of the class given the daR(Cy|A1, Ay, ...,An). Applying Bayes’ theorem,

P(CiA1, Az, ... An) O P(Aq, Ag, ... An|Ci) P(Ck) (12)

A particular but very common Bayesian classifier is taive Bayes Classifier
In order to estimate the conditional probabilB(As, Ay, ..., An|Ck), a Naive Bayes
Classifier assumes the probabilistidependencef the attributes +e. the presence
or absence of a particular attribute is unrelated to thegmes or absence of any
other. This assumption leads to

P(A1, Az, ..., AN|Ci) = P(A1|Cio) P(A2|Cy)...P(An|Ck) (13)

If conditional probabilities are zero, then the entire egsion becomes zero so
the Naive Bayes Classifier will not be able to classify théanse. In this case, we
can use then-estimatepproach for estimating conditional probabilities:

Nc+mp

n+m (14)

P(AICY) =
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P(S P(M)
0.6 0.2
S M|P(P)
- T T|08
Likes
Pizza T Fl09
FF|04

Fig. 6: Example of a Bayesian Belief Network

wheren is the number of training instances in cl& is the number of training
instances belonging to clagswith attribute A;, p is the prior estimation of the
probability (usually set to one over the number of valueshef attribute we are
considering), andhis a parameter known as teguivalent sample size

Another issue with Bayesian classifiers is that the comjmurtatf eachP(A;|Cy)
depends on the nature of the attribute that we are dealirig Wuithe case of discrete

attributes P(Ai|Cy) = % where|AX| is number of instances that have attribate
and belong to clags,. Continuous attributes are typically discretized.

The main benefits of Naive Bayes classifiers are that theycdmest to isolated
noise points and irrelevant attributes, and they handlsingsvalues by ignoring
the instance during probability estimate calculations.

However, the independence assumption may not hold for stiniguges as they
might be correlated. In this case, the usual approach isstthesso-calle@ayesian
Belief Networks (BBNjor Bayesian Networks, for short). BBN's use an acyclic
graph to encode the dependence between attributes and abpityliable that as-
sociates each node to its immediate parents (see)iff.a nodeA does not have
any parent, the table contains only prior probabiR{iA); if the node has only one
parentB, the table contains the conditional probabilRyA|B); and if the node has
multiple parents, the table contains the conditional poilig P(A|B1,By,...,B3).
BBN'’s provide a way to capture prior knowledge in a domaimgsa graphical
model. And, although constructing the model is non-trivaaice the structure of
the network is determined it is quite easy to add a new vagidhla similar way
to Naive Bayes classifiers, BBN’s handle incomplete datd amd they are quite
robust to model overfitting.

3.4.1 Bayesian Classifiers in Recommender Systems
Bayesian classifiers are particularly popular for modelesrecommender systems.

They are often used to derive a model for content-based neemder systems.
However, they have also been used in a collaborative fitjes@tting.
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Ghani and Fano [32], for instance, use a Naive Bayes clasgifimmplement a
content-based recommender system. The use of this modeisafibr recommend-
ing products from unrelated categories in the context ofpgmdenent store.

Miyahara and Pazzani [48] implement a recommender systsedban a Naive
Bayes classifier. In order to do so, they define two clagiesanddon't like. In this
context they propose two ways of using the Naive Bayesiass@lar: TheTrans-
formed Data Modehassumes that all features are completely independenteand f
ture selection is implemented as a preprocessing step.ethler hand, th8parse
Data Modelassumes that only known features are informative for diaasion.
Furthermore, it only makes use of data which both users riatedmmon when
estimating probabilities. Experiments show both modelpéddorm better than a
correlation-based collaborative filtering.

Pronket al. [52] use a Bayesian Naive Classifier as the base for incotipgra
user control and improving performance, especially in elitt situations. In order
to do so they propose to maintain two profiles for each uses:learned from the
rating history, and the other explicitly created by the u3ére blending of both
classifiers can be controlled in such a way that the userat&finofile is favored
at early stages, when there is not too much rating histoytla@ learned classifier
takes over at later stages.

In the previous section we mentioned that Gettal. [26] implemented a rule-
based approach in a TV content recommender system. Anctlilee @approaches
they tested was a Bayesian classifier. They define a two-classifier, where the
classes argvatchednot watched The user profile is then a collection of attributes
together with the number of times they occur in positive aedative examples.
This is used to compute prior probabilities that a show bgsao a particular class
and the conditional probability that a given feature willgresent if a show is either
positive or negative. It must be noted that features ardjindase, related to both
content +e. genre — and contexts.e. time of the day. The posteriori probabilities
for a new show are then computed from these.

Breeseet al.[12] implement a Bayesian Network where each node corredgpon
to each item. The states correspond to each possible vaie. Valthe network, each
item will have a set of parentitems that are its best predicithe conditional prob-
ability tables are represented by decision trees. The eaithport better results for
this model than for several nearest-neighbors implemientabver several datasets.

Hierarchical Bayesian Networks have also been used in @les&ttings as a way
to add domain-knowledge for information filtering [71]. Oaigthe issues with hier-
archical Bayesian networks, however, is that it is very egpe to learn and update
the model when there are many users in it. Zhang and Korenpft@jose a varia-
tion over the standard Expectation-Maximization (EM) middeorder to speed up
this process in the scenario of a content-based recommeystem.
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3.5 Artificial Neural Networks

The Artificial Neural Network (ANN) model [74] is an assemlafjinter-connected
nodes and weighted links that is inspired in the architectdithe biological brain.
Nodes in an ANN are calledeuronsas an analogy with biological neurons. These
simple functional units are composed into networks thaehhe ability to learn a
classification problem after they are trained with sufficidata.

The simplest case of an ANN is tiperceptrormodel, illustrated in figuré.

Input Signals

Activation
Function
X1

x2
Output

@(e) 3

Summing Junction

Xp

6k

Threshold

Synaptic Weights

Fig. 7: Perceptron model

If we particularize thectivation functiornp to be the simple Threshold Function
, the output is obtained by summing up each of its input vakmoaling to the
weights of its links and comparing its output against sonesinoldf,. The output
function can be expressed using B§. The perceptron model is a linear classifier
that has a simple and efficient learning algorithm summérizé.isting 3.

. (15)
0, if ¥ xiw < 6k

Besides the simple Threshold Function used in the Peraeptamlel, there are
several other common choices for the activation functiahsas sigmoid, tanh, or
step functions.

Using neurons as atomic functional units, there are mangiplesarchitectures
to put them together in a network. But, by far, the most comaygproach is to use

{17 if 5 xwig > 6
Yk =
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Algorithm 3 Perceptron Learning algorithm

1: LetD = (x,Yi)|[i=1,2,---,N be the set of training examples
2: Initialize the weight vector with random value®®
3: repeat

4 for each training exampléx, y;) € D dodo

5 Compute the predicted outpyt ~

6 for each weightv; do

7 Update the weight/™ = wX+ A (yi — §¥)x;
8 end for

9 end for
10: until stopping condition is met

thefeed-forward ANNsee figureB). In this case, signals are strictly progated in one
way: from input to output.

An ANN can have any number of layers. The simple feedforwatd/ark in fig-
ure8 has three layers. On the other hand, the perceptron in fiisra single-layer
feed-forward ANN. Layers in an ANN are classified into thrgess: input, hidden,
and output. Units in the input layer respond to data that dsiféo the network.
Hidden units receive the weighted output from the inputsufind the output units
respond to the weighted output from the hidden units andrgéméhe final output
of the network.

Feedforward
Neural Net

Input Layer

Fig. 8: Example of a simple feed-forward ANN with one hiddaydr

The learning algorithm in listin@ is only valid for the simple Perceptron model.
There exissupervisedunsupervisedandreinforcementearning algorithms for the
general case of multilayer networks. The generic algoritbimearning ANN in a
supervised way, for instance, is summarized in figurehe most common concrete
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algorithm for learning ANN’s is the so-calldobck-propagatioralgorithm, based
on the computation of the error derivative of the weightswigeer, it is beyond the
scope of this chapter to go into the details of this algorithm

Input Features Target Features

Neural
Net

—> =@
| {r ||

Supervised
Learning

Algorithm

Fig. 9: Supervised learning process for learning an ANN

The main advantages of ANN are that — depending on the aativainction

— they can perform non-linear classification tasks, and, ttha¢ to their parallel
nature, they can be efficient and even operate if part of theark fails. The main
disadvantage is that it is hard to come up with the ideal n&tapology for a
given problem and once the topology is decided this will @&cadower bound for
the classification error. ANN'’s belong to the classob-symboliclassifiers, which
means that they provide no semantics for inferring knowdedige. they promote a
kind of black-boxapproach.

3.5.1 Artificial Neural Networks in Recommender Systems

ANN'’s can be used in a similar way as Bayesian Networks totcocismodel-based
recommender systems. However, there is no conclusive stuafyether ANN in-
troduce any performance gain. As a matter of fact, PazzahiBalfsus [51] did
a comprehensive experimental study on the use of severdlinetearning algo-
rithms for web site recommendation. Their main goal was tmgare the simple
naive Bayesian Classifier with computationally more experalternatives such as
Decision Trees and Neural Networks. Their experimentallteshow that Deci-
sion Trees perform significantly worse. On the other hand Adid the Bayesian
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classifier perform similarly. They conclude that there doetsseem to be a need for
nonlinear classifiers such as the ANN.

ANN can be used to combine (or hybridize) the input from savescommen-
dation modules or data sources. Hsual. [27], for instance, build a TV recom-
mender by importing data from four different sources: usefiles and stereotypes;
viewing communities; program metadata; and viewing canfxey use the back-
propagation algorithm to train a three-layered neural nétw

Berkaet al.[28] used ANN to build an URL recommender system for web navi-
gation. They implemented a content-independent systegtdmas|usively ortrails
—i.e. associating pairs of domain names with the number of peoptetvaversed
them. In order to do so they used feed-forward MultilayeicBptrons trained with
the Backpropagation algorithm.

Christakou and Stafylopatis [15] build a hybrid contensdx collaborative fil-
tering recommender system. The content-based recommisnichgriemented using
three neural networks per user, each of them corresponadliogd of the following
features: “kinds”, “stars”, and “synopsis”. They trainbe@ tANN using the Resilient
Backpropagation method.

3.6 Support Vector Machines

The goal of a Support Vector Machine (SVM) classifier [20]adind a linear hy-
perplane (decision boundary) that separates the dataliresway that the margin is
maximized. For instance, if we look at a two class separgfoblem in two dimen-
sions like the one illustrated in figuded, we can easily observe that there are many
possible boundary lines to separate the two classes. Eactilaoy has an associated
margin. The rationale behind SVM's is that if we choose the that maximizes the
margin we are less likely to missclassify unknown items mfilture.

Small Margin Large Margin

A/
A 4 },
1y
1 N
)

A A

'
Support Vectors

Fig. 10: Different boundary decisions are possible to s#pawo classes in two
dimensions. Each boundary has an associated margin.
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A linear separation between two classes is accomplishedgrthe following
function:

We define a function that can classify items of being of clabor-1 as long
as they are separated by some minimum distance from thesgpasation function
previously defined. The function is given by Ed.

i >
F(x) = 1, ff wex+b>1 (17)
-1, ifwex+b< -1
. 2
Margin= —— (18)

[Iw[?

Following the main rationale for SVM'’s, we would like to maxize the margin
between the two classes, given by equati@nThis is in fact equivalent to mini-

mizing the inverse valuke(w) = W but subjected to the constraints givenfix).
This is a constrained optimization problem and there arearigal approaches to
solve it (e.g., quadratic programming).

If the items are not linearly separable we can decide to tuerstm into asoft
margin classifier by introducing alack variable In this case the formula to mini-
mize is given by equatiof9 subject to the new definition of(x) in equation20.
Note that the constar@@ in equation19 allows to define the cost of a constraint
violation.

L(w) = % +cie (19)

F(x) = 1, if wex+b>1—¢ (20)
T ]-1, ifwex+b<-1+¢

On the other hand, if the decision boundary is not linear wedrte transform
data into a higher dimensional space (see fidiie This is accomplished thanks
to a mathematical transformation known as lteenel trick The basic idea is to re-
place the dot products in equati@i by akernelfunction. There are many different
possible choices for the kernel function such as Polynoari&igmoid. But by far
the most common kernel function are the family of Radial B&sinction (RBF).
The formulation for a Gaussian RBF, for instance, is giverEQy21.

k(x.X) = exp(—yi[x—X|[?) (21)
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Transformed Feature Space

(@ (b)

Fig. 11: Mapping input data into a different feature spacemgtproblem will be
linearly separable

3.6.1 Support Vector Machines in Recommender Systems

Support Vector Machines have recently gained popularitytfeir performance and
efficiency in many settings. SVM’s have also shown promigiacent results in
recommender systems.

Kang and Yoo [42], for instance, report on an experimental\sthat aims at se-
lecting the best preprocessing technique for predictirgsimg values for an SVM-
based recommender system. In particular, they use SVD gopbBiMector Regres-
sion. The Support Vector Machine recommender system is tyilirst binarizing
the 80 levels of available user preference data. They exgatiwith several settings
and report best results for a threshold of 32e-a value of 32 and less is classified
aspreferand a higher value ado not prefer The user id is used as the class label
and the positive and negative values are expressed asgederalues 1 and 2.

Xu and Araki [69] used SVM to build a TV program recommendesteyn. They
use information from the Electronic Program Guide (EPGeasures. But in order
to reduce features they removed words with lowest freqesné&urthermore, and
in order to evaluate different approaches, they used betBtolean and th&erm
frequency - inverse document frequeli€¥IDF) weighting schemes for features.
In the former, 0 and 1 are used to represent absence or peegéaderm on the
content. In the latter, this is turned into the TFIDF numalri@lue.

Xia et al.[68] present different approaches to using SVM's for recander sys-
tems in a collaborative filtering setting. They explore the of Smoothing Support
Vector Machines (SSVM). They also introduce a SSVM-basedistic (SSVMBH)
to iteratively estimate missing elements in the user-iteatrix. They compute pre-
dictions by creating a classifier for each user. Their expenital results report best
results for the SSVMBH as compared to both SSVM’s and trawliti user-based
and item-based collaborative filtering.

Oku et al. [24] propose the use of Context-Aware Vector Machines (Q4%V
for context-aware recommender systems. They compare thefistandard SVM,
C-SVM and an extension that uses collaborative filtering e @ C-SVM. Their
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results show the effectiveness of the context-aware metfmdestaurant recom-
mendations.

3.7 Ensembles of Classifiers

The basic idea behind the use efisemble®f classifiers is to construct a set of
classifiers from the training data and predict class labpt®fiously unseen records
by aggregating their predictions.

Ensembles of classifiers work whenever we can assume thatabsifiers are
independent. In this case we can ensure that the ensembfgedlice results that
are in the worst case as bad as the worst classifier in the &hesefherefore, com-
bining classifiers of a similar classification error will grimprove results.

In order to generate ensembles, several approaches aiblpo¥se two most
common techniques afaggingandBoosting In Bagging, we perform sampling
with replacement, building the classifier on each bootsteapple. Therefore each
sample has probabilityl1/n)n of being selected. In Boosting we use an iterative
procedure to adaptively change distribution of trainingaday focusing more on
previously misclassified records. Initially, all record® assigned equal weights.
But, unlike bagging, weights may change at the end of eackthmyround: Records
that are wrongly classified will have their weights increhagile records that are
classified correctly will have their weights decreased. Raneple of boosting is the
AdaBoost algorithm.

3.7.1 Ensembles of Classifiers in Recommender Systems

The use of ensembles of classifiers is common practice inebenmmmender sys-
tems field. As a matter of fact, amybridationtechnique [13] can be considered an
ensemble as it combines in one way or another several ctassifi

Experimental results show that ensembles can produce bettelts than any
classifier in isolation. Belét al. [8], for instance, used a combination of 107 differ-
ent methods in their progress prize winning solution to tledflik challenge. They
state that their findings show that it pays off more to find samiglly different ap-
proaches rather than focusing on refining a particular tiecien This is related to
the property we highlighted before: if classifiers are unelated, their combination
can only improve results. In order to blend the results fromménsembles they use
a linear regression approach. In order to derive weightsdch classifier, they par-
tition the test dataset into 15 different bins and derivequaicoefficients for each
of the bins.
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3.8 Evaluating Classifiers

Learning algorithms and classifiers can be evaluated byiptiltriteria. This in-
cludes how accurately they perform the classificationy t@inputational complex-
ity during training , complexity during classification, theensitivity to noisy data,
their scalability, and so on. In this section we will focudyoan classification per-
formance. In order to evaluate a model we usually take intowaat the following
measuresTrue Positives(T P): number of instances classified as belonging to class
Athat truly belong to clas4; True Negatives(T N): number of instances classified
as not belonging to clagsand that in fact do not belong to claAsFalse Positives
(FP): number of instances classified as clasbut that do not belong to clags
False NegativegFN): instances not classified as belonging to class v but that in
fact do belong to clasA.

The most commonly used measure for model performanceAsdsracydefined
as the ratio between the instances that have been corréadhifeed (as belonging
or not to the given class) and the total number of instances.

Accuracy= (TP+TN)/(TP+TN-+FP+FN) (22)

However, accuracy might be misleading in many cases. Ineagyi®+-class prob-
lem in which there are 99,900 samples of class A and 100 of 8a# a classifier
simply predicts everything to be of class A, the computedusaxy would be of
99.9%. However, the model performance is questionableusecia will never de-
tect any class B examples.

One way to improve this evaluation is to define the cost mathigre we declare
the cost of misclassifying class B examples as being of @assreal world appli-
cations different types of errors may indeed have very difiecosts. For example,
if the 100 samples above correspond to defective airplarie jpean assembly line,
incorrectly rejecting a non-defective part (one of the 89,8amples) has a negli-
gible cost compared to the cost of mistakenly classifyingfective part as a good
part.

Other common measures of model performance, particuladiyformation Re-
trieval, are Precision and Recall.

P=TP/(TP+FP) (23)

R=TP/(TP+FN) (24)

Precision is a measure of how many errors we make in clasgify@mples as
being of class A. Recall measures how good we are in not Igauith samples that
should have been classified as belonging to the class. Nattéhisse two measures
are misleading when used in isolation in most cases. We duuild a classifier
of perfect precision by not classifying any sample as beihglass A (therefore
obtaining 0 TP but also 0 FP). Conversely, we could build asifeer of perfect
recall by classifying all samples as belonging to class A.
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As a matter of fact, there is a measure, calledRheneasure that combines both
Precision and Recall into a single measure as:
2RP 2TP
Fr= = (25)
R+P 2TP+FN+FP
Additional factors that impact performance include thessldistribution and the
size of the training and test sets. In order to address clsahgeto training sampling
size, we can construct the so-called Learning Curve, whidws how accuracy
changes with varying training sample size. This requiredecide on a sampling
strategy in order to create the curve. These sampling gtestevere reviewed in

section2.2
Sometimes we would like to compare several competing madé#ter than es-
timate their performance independently. In order to do sase a technique de-
veloped in the 1950s for analysis of noisy signals: the Recédperating Charac-
teristic (ROC) Curve. A ROC curve characterizes the retatietween positive hits
and false alarms. The performance of each classifier isgepted as a point on the

curve (see Figl2).
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We plot the relation between TP and FP on a two-dimensiomal phy point
located a >y is classified as positive. Some points of interest in a ROQeare
(TR FP) = (0,0): declare everything to be negative clads;l): declare everything
to be positive class(1,0): ideal. The diagonal line means random guessing and
below the diagonal line the prediction is opposite of the trlass.

3.8.1 Evaluation of Classifiers in Recommender Systems

The most commonly accepted evaluation measure for recohensgstems is the
Mean Average Error (MAE) or Root Mean Squared Error (RMSEhefpredicted
interest (or rating) and the measured one. These measuessiraeccuracy with-
out any assumption on the purpose of the recommender systewever, as Mc-
Nee et al. point out [47], there is much more than accuracyetdihg whether
an item should be recommended. Herlocker et al. [38] pro@idemprehensive re-
view of algorithmic evaluation approaches to recommengstesns. They suggest
that some measures could potentially be more appropriagofoe tasks. However,
they are not able to validate the measures when evaluatngjffierent approaches
empirically on a class of recommendation algorithms andglsiset of data.

A step forward is to consider that the purpose of a “real” rec@®nder system
is to produce a top-N list of recommendations and evaluatemenender systems
depending on how well they can classify items as beampmmendableZiegleret
al. show [73] that evaluating recommender algorithms throoghN lists measures
still does not map directly to the user’s utility functionoWever, it does address
some of the limitations of the more commonly accepted aayureeasures, such as
MAE.

If we look at our recommendation as a classification probleecan make use
of well-known measures for classifier evaluation such asigien and recall. Basu
et al.[6], for instance, use these measures by analyzing whidiedféms predicted
in the top quartile of the rating scale were actually evadan the top quartile by
the user.

McLaughlin and Herlocker [46] proposenaodified precisioomeasure in which
non-rated items are counted st recommendabl& his precision measure in fact
represents a lower-bound of the “real” precision.

Although the F-measure can be directly derived from theipi@t-recall values,
it is not common to find it in recommender systems evaluatiblusanget al. [39]
and Bozzoret al.[10], and Miyahara and Pazzani [48] are some of the few exasnpl
of the use of this measure.

ROC curves have also been used in evaluating recommendensysZhanget
al. [58] use the value of the area under the ROC curve as theiu&vah measure
when comparing the performance of different algorithmsanradtack. Banerjee and
Ramanathan [4] also use the ROC curves to compare the perficaof different
models.

It must be noted, though, that the choice of a good evaluatieasure, even
in the case of a top-N recommender system, is still a matteliscussion. Many
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authors have proposed measures that are only indirectlieckto these traditional
evaluation schemes. Deshpande and Karypis [21], for instgoropose the use of
thehit rateand theaverage reciprocal hit-rankOn the other hand, Breeseal.[12]
define a measure of the utility of the recommendation in aedrist as a function
of the neutral vote.

4 Cluster Analysis

Clustering [37], also referred to as unsupervised learndogsists of assigning
items to groups so that the items in the same groups are nmoikarsthan items
in different groups: the goal is to discover natural (or megful) groups that ex-
ist in the data. Similarity is determined using a distancesnee, such as the ones
reviewed in2.1, between the feature vectors that represent the items. Gddeofa
clustering algorithm is to minimize intra-cluster distasavhile maximizing inter-
cluster distances because these constitute measures qfiality of a particular
clustering. Intuitively this means that a good clusterifg set of data points shows
clearly distinct groups. Note that in clustering there ispnior knowledge of class
labels (as was the case in supervised learning). For examplerson who has an
mp3 song collection may not have the songs in individualdmddbut a good cluster-
ing algorithm might discover that the collection has maiBlgroups (which could
correspond, for example, to classical, heavy metal, ark.fol

There are two main categories of clustering algorithms:an@hical and parti-
tional.

e Partitional clustering algorithms divide data items intmroverlapping clusters
such that each data item is in exactly one cluster.

e Hierarchical clustering algorithms successively cluggmns within found clus-
ters, producing a set of nested cluster organized as a tiécaf tree.

Features used to represent an item play a crucial role imrdetiag the cluster-
ing, as does the similarity metric used. In addition, iterms be assigned member-
ship values within a group (in fuzzy clustering an items mership in a group is
assigned a value, commonly between 0 and 1), and it can baliskeal that items
have to belong to only one group or may belong to several.

Many clustering algorithms try to minimize a function thag¢asures the quality
of the clustering. Such a quality function is often referte@s the objective func-
tion, so clustering can be viewed as an optimization probtbe ideal clustering
algorithm would consider all possible partitions of theadaihd output the partition-
ing that minimizes the quality function. But the correspimigcbptimization problem
is NP hard, so many algorithms resort to heuristics (e.ghérk-means algorithm
using only local optimization procedures potentially emgin local minima). The
main point is that clustering is a difficult problem for whifihding optimal solu-
tions is often not possible.
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Selection of the particular clustering algorithm and itsgpaetersé€.g, similarity
measure) depend on many factors, including the charatitsrisf the data. In the
following sections we describe tHhemeans clustering algorithm and some of its
alternatives.

4.1 k-Means

k-Means (also known dscenters) clustering is a partitioning method. The functio
partitions the data set & items intok disjoint subsets; that containN; items so
that they are as close to each other as possible according@djstance measure.
Each cluster in the partition is defined by its memibé¢rand by its centroid . The
centroid for each cluster is the point to which the sum ofadlises from all items in
that cluster is minimized. Thus, we can define khmeans algorithm as an iterative
process to minimize

E= én;jd(xn,)\j) (26)

wherex, is a vector representing timeth item, A; is the centroid of the item i
andd is the distance measure. Tkeneans algorithm moves items between clusters
until E cannot be decreased further. The algorithm is describestmg 4.

Algorithm 4 k-means

Input

X = X1, ..., Xy (items to be clustered)
. k (number of clusters)

Output

AN = Ay1,.., A (Cluster centroids)

m: X — C (cluster membership)

. Set the centroidd to their initial value (e.g. random selectionloitems inX)

COoNORWONE

10: for x; € X do
110 m(x) = argmine1 k3 d(x, Aj) (assign each item to the closest centroid)
12: end for

14: while mhas changedo
15: for je {1.k} do

16: Recalculate the centroi] according to the items that belong tq{itm(i) = j}

17:  end for

18: for x; € X do

19: m(x ) = argminc(1 k3 d(%i, Aj) (update the membership rfto the closest centroid)
20:  end for

21: end while




34 Xavier Amatriain, Alejandro Jaimes, Nuria Oliver, and&p M. Pujol

4 4 4
3 XX 3 £x 3 o o
x x o o
x ¥ x o o o
2 2 2
X ax” F oe; o
1 XX 1 xx 1
x o B I 8 g 0%os0 D
0 5 x o o of og i %
X% X 3
-1 [ El Fow g -1 g %mmqm
XX X X XX X X 0" pTooog, ©
-2 K x -2 o x " o5 o
x x -}
-3 X -3 % -3 %
-4 -4 -4 o
-4 -2 0 2 4 -4 -2 o 2 4 -4 -2 0 2 4
x  items © items of cluster 1
©  centroid of cluster 1 o items of cluster 2
o centroid of cluster 2 x centroid of cluster 1
x__centroid of cluster 2

Fig. 13: Example ok-means, with k=2. From left to right, the data to be parti&idn
the initial 2 centroids as two data items chosen at randomi,fimally, the final
partition of the data in 2 clusters (with the centroid of thesters asx)

The algorithm works by randomly selectitkkgcentroids. Then all items are as-
signed to the cluster whose centroid is the closest to thé@néw cluster centroid
needs to be updated to account for the items who have beed add=moved from
the cluster and the membership of the items to the clusteatedd This operation
continues until there are no further items that change thaster membership. Most
of the convergence to the final partition takes place duliedfirst iterations of the
algorithm, and therefore, the stopping condition is oftearged to “until relatively
few points change clusters” in order to improve efficiency.

The distance measure depends on the data we need to clostiee éxample
in figure 13 we used the sum of square errors (SSEX(A}) = Tk(Xk — Ajk)?).
However, other measures such as the Euclidian distanceeéCsimilarity, Pearson
correlation, Manhattan distance or Hamming distance a@widely used.

The basick-means has several shortcomin(fk) it does assume prior knowl-
edge of the data in order to choose the appropkatéthe number of clusters is
unknown it is advisable to run the algorithm for a rang&k@hd then choose the
partition whose in which the distance between the items efaduster with respect
to the items of the rest of the clusters is hi¢h) The final clusters are very sen-
sitive to the selection of the initial centroids. Thus, diint runs of the algorithm
could yield different clusters. To address this issue it esn proposed to rum
replicas with different seeds — the initial centroid — andeturn the one with the
lowest value ofe. More sophisticated techniques involve data sampling aimtgu
hierarchical clustering to determine the initial centsidnother technique is to use
the Bisectingk-means, which is a a variant &fmeans that can produce a hierar-
chical clustering. The last shortcomii(g) is that the basik-means can produce
empty clusters, there are several strategies to deal wilsgue, from treating it as
an error to treat it as a singleton, creating a new clustesisting of the one point
furthest from its centroid.

k-means is an extremely simple and efficient algorithm budriafspom the is-
sued just described it does have several limitations wighnmeto the dat&k-means
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has problems when clusters are of differing sizes, dessitien-globular shapes.
k-means also has problems when the data contains outliers.

4.2 Alternatives tdk-means

Although thek-means algorithm presents limitations, the truth is thistvery diffi-
cult to find practical alternatives. In the following paraghs we will briefly review
some of them.

Density-based clusteringalgorithms such as DBSCAN work by building up on
the definition of density as the number of points within a #igtradius. DBSCAN,
for instance, defines three kinds of poirdsre pointsare those that have more than
a specified number of neighbors within a given distamoeder pointshave fewer
than the specified number but belong toosie pointneighborhood; andoise points
are those that are neither core or border. The algorithratitely removesoise
pointsand performs clustering on the remaining points.

Message-passing clusteringlgorithms are a very recent family of graph-based
clustering methods. Instead of considering an initial stib$ the points as centers
and then iteratively adapt those, message-passing diguwiinitially consider all
points as centers — usually knownea@mplarsn this context. During the algorithm
execution points, which are now considered nodes in a n&heschange messages
until clusters gradually emergéffinity Propagatioris an important representative
of this family of algorithms [29] that works by defining tworlds of messages
between nodes: “responsibility”, which reflects how welited receiving point is
to serve as exemplar of the point sending the message, takimgccount other
potential exemplars; and “availability”, which is sentrit@candidate exemplar to the
point and reflects how appropriate it would be for the pointhoose the candidate
as its exemplar, taking into account support from other{gdimat are choosing that
same exemplar. Affinity propagation has been applied, wétty yood results, to
problems as different as DNA sequence clustering, facessing in images, or text
summarization.

Finally, Hierarchical Clustering, produces a set of nested clusters organized as
a hierarchical treedendogranh Hierarchical Clustering does not have to assume
a particular number of clusters in advanced. Also, any ddsiiumber of clusters
can be obtained by selecting the tree at the proper levetakigical clusters can
also sometimes correspond to meaningful taxonomies. fiwadl hierarchical al-
gorithms use a similarity or distance matrix and merge dt epk cluster at a time.
There are two main approaches to hierarchical clusterimggblomerativehier-
archical clustering we start with the points as individuakters and at each step,
merge the closest pair of clusters until only one clusterk(olusters) are left. In
divisive hierarchical clustering we start with one, all-inclusiester, and at each
step, split a cluster until each cluster contains a pointt{ere are k clusters).
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4.3 Cluster Analysis in Recommender Systems

The main problem for scaling a collaborative filtering clssis the amount of op-
erations involved in computing distances — for finding thetkenearest neighbors,
for instance. A possible solution is, as we saw in secZidhto reduce dimension-
ality. But, even if we reduce dimensionality of features, might still have many
objects to compute the distance to. This is where clusteaaiggrithms can come
into play. The same is true for content-based recommendtrsg, where distances
among objects are needed to retrieve similar ones.

Clustering is sure to improve efficiency because the numbeperations is re-
duced. However, and unlike dimensionality reduction me#hdt is unlikely that it
can help improve accuracy. Therefore, clustering must Ipdiegpwith care when
designing a recommender system, measuring the comproreiaedn improved
efficiency and a possible decrease in accuracy.

We shall now review some known applications of clusterirghtéques in rec-
ommender systems.

Xueet al.[70] present a typical use of clustering in the context of@remender
systems by employing the-teansalgorithm as a pre-processing step to help in
neighborhood formation. They do not restrict the neighborhto the cluster the
user belongs to but rather use the distance from the useffévedit cluster cen-
troids as a pre-selection step for the neighbors. They alpteiment a cluster-based
smoothing technique in which missing values for users inustel are replaced
by cluster representatives. Their method is reported toparslightly better than
standardkNN-based collaborative filtering.

In a similar way, Sarwaet al.[23] describe an approach to implement a scalable
kNN classifier. They partition the user space by applyingdisectingk-meansl-
gorithm and then use those clusters as the base for neigidmbfbrmation. They
report a decrease in accuracy of around 5% as compared tastitN CF. How-
ever, their approach allows for a significant improvemermfficiency.

Connor and Herlocker [18] present a different approach incyhinstead of
users, they cluster items. Using the Pearson Correlatiifesity measure they try
out four different algorithms: average link hierarchichghlomerative [35], robust
clustering algorithm for categorical attributes (ROCKp[3kMetis, and hMetig.
Although clustering did improve efficiency, all of their skering techniques yielded
worse accuracy and coverage than the non-partitionedibesel

Li et al.[54] and Ungar and Foster [63] present a very similar apgréaicusing
k-meansclustering for solving a probabilistic model interpretatiof the recom-
mender problem.

To the best of our knowledge, alternativekimeans such as the ones presented
in section4.2 have not been applied to recommender systems. The singpdicd
efficiency of thek-means algorithm shadows possible alternatives. It is leatrc
whether density-based or hierarchical clustering apgresabave anything to offer
in the recommender systems arena. On the other hand, mgsasgjag algorithms

4 http://www.cs.umn.edu/ karypis/metis
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have been shown to be more efficient and their graph-basedigar can be easily
translated to the recommender systems problem. It is dedsilit we see applica-
tions of these algorithms in the coming years.

5 Association Analysis

Association Rule Mining focuses on finding rules that wik@ict the occurrence of
an item based on the occurrences of other items in a traosadthe fact that two
items are found to be related means co-occurrence but nsaligu

We define antemsetas a collection of one or more items (e.g. (Milk, Beer,
Diaper)). Ak-itemsetis an itemset that contains k items. The frequency of a given
itemset is known asupport counte.g. (Milk, Beer, Diaper) = 131). And threupport
of the itemset is the fraction of transactions that contiaje.g. (Milk, Beer, Diaper)
=0.12). Afrequent itemseis an itemset with a support that is greater or equal to a
minsupthreshold.

An association rule is an expression of the foXm=Y, whereX andY are
itemsets. (e.gMilk,Diaper = Beel). In this case thesupportof the association
rule is the fraction of transactions that have bitlandY. On the other hand, the
confidencef the rule is how often items i¥f appear in transactions that contin

Given a set of transactionB, the goal of association rule mining is to find
all rules havingsupport> minsupthresholé@ndcon fidence> mincon fthreshold
The brute-force approach would be to list all possible d@ssion rules, compute the
support and confidence for each rule and then prune rulesithabt satisfy both
conditions. This is, however, computationally very expess

For this reason, we take a two-step approach: (1) Genefaterakets whose
support> minsup Frequent Itemset Generation); (2) Generate high confidence
rules from each frequent items&yle Generation)

5.1 Frequent Itemset generation and the Apriori Principle

But if we follow a brute-force approach, frequent itemseteation is still compu-
tationally expensive. Each itemset in the lattice is a cdaudi frequent itemset and
we have to count the support of each candidate by scannirigatigaction database
(i.e. match each transaction against every candidate).

Several techniques exist to optimize the generation ofukatjitemsets. On a
broad sense they can be classified into those that try to ri@aithe number of
candidatesN!), those that reduce the number of transactidws and those that
reduce the number of comparisohd\).

The most common approach though, is to reduce the numbendidztes using
the Apriori principle. This principle states that if an itemset is frequent, thiénfa
its subsets must also be frequent. This is verified usinguppat measure because
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the support of an itemset never exceeds that of its subdmtsApriori Algorithm is
a practical implementation of the principle. Its basic stage illustrated in listiné.

Algorithm 5 Apriori algorithm
. Letk=1
. Generate frequent itemsets of length 1
repeat
Generate length (k+1) candidate itemsets from lengtedufent itemsets
Prune candidate itemsets containing subsets of lendtatlate infrequent
Count the support of each candidate by scanning the DB
Eliminate candidates that are infrequent, leaving onbsé that are frequent
until no new frequent itemsets are identified

ONORWONE

Several implementation strategies are also possible tewestthe number of com-
parisons. However, no matter what strategies we adopt, e teebe aware of the
factors that affect computational complexity. First, #nés the minimum support
threshold. A lower threshold may produce more and longejueat itemsets. An-
other factor that affects is the number of items of the daté&dsmensionality). More
items means more space to store support count. The size toatteaction database
might also affect algorithms such as the Apriori, which rieggmultiple passes.

5.2 Rule Generation

Given a frequent itemset L, the goal when generating rulesfiad all non-empty
subsets that satisfy the minimum confidence requirement.

If |L| =k, then there arek2 candidate association rules. So, as in the frequent
itemset generation, we need to find ways to generate rulesetily.

For the Apriori Algorithm we can generate candidate rulesigyging two rules
that share the same prefix in the rule consequent. jBig(CD = AB,BD =- AC)
would produce the candidate rule= ABC. We could therefore prune rul@ =
ABC provided that its subsé&tD = BC does not have high confidence.

5.3 Association Rules in Recommender Systems

The effectiveness of association rule mining for uncovgpatterns and driving
personalized marketing decisions has been known for a 9omeg2]. However, and
although there is a clear relation between this method anddhl of a recommender
system, they have not become mainstream. The main readuat ihis approach is
similar to item-based collaborative filtering but is lesgitide since it requires of an
explicit notion oftransaction-e.g.co-ocurrence of events in a given session. In the
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next paragraphs we present some promising examples, sowtgaif indicate that
association rules still have not had their last word.

Mobashetret al. [49] present a system for web personalization based oniassoc
ation rules mining. Their system identifies associatiomsutom pageviews co-
occurrences based on users navigational patterns. Theioagh outperforms a
kNN-based recommendation system both in terms of precisidrcaverage.

Smythet al.[61] present two different case studies of using associatites for
recommender systems. In the first case they use fhi®ri algorithm to extract item
association rules from user profiles in order to derive aebdim-item similarity
measure. In the second case, they apply association rulegrimaconversational
recommender. The goal here is to find co-occuregitigues— i.e. user indicating a
preference over a particular feature of the recommended ite

Lin et al.[45] present a new association mining algorithm that adjttst min-
imum support of the rules during mining in order to obtain @prapriate num-
ber of significant rule therefore addressing some of thetsborings of previ-
ous algorithms such as the priori. They mine both association rules between
users and items. The measured accuracy outperforms psivieported values for
correlation-based recommendation and is similar to theeretaborate approaches
such as the combination of SVD and ANN.

As already mentioned in secti®2.], Choet al.[14] combine Decision Trees
and Association Rule Mining in a web shop recommender sydietheir system,
association rules are derived in order to link related itehfe recommendation is
then computed by intersecting association rules with usfepences. They look for
association rules in different transaction sets such ashpses, basket placement,
and click-through. They also use a heuristic for weightinigs coming from each
of the transaction sets. Purchase association rules,dtarioe, are weighted higher
than click-through association rules.

6 Conclusions

This chapter has introduced the main data mining methodsemhtiques that can
be applied in the design of a recommender system. We haveaigeyed their use
in the literature and provided some rough guidelines on hwdwehere they can be
applied.

We started by reviewing techniques that can be applied imptkeprocessing
step. First, there is the choice of an appropriate distareasuore, which is reviewed
in Section2.1 This is required by most of the methods in the following stefhe
cosine similarity and Pearson correlation are commonlgjpiex as the best choice.
Although there have been many efforts devoted to improviregé distance mea-
sures, recent works seem to report that the choice of a distamction does not
play such an important role. Then, in Sect@i2, we reviewed the basic sampling
techniques that need to be applied in order to select a sobset originaly large
data set, or to separating a training and a testing set.Ifina discussed the use of
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dimensionality reduction techniques such as Principal @mment Analysis and Sin-
gular Value Decomposition in Secti@3. These techniques offer a dual advantage:
On the one hand they reduce dimensionality and avoicttinge of dimensionality
problem; on the other, they help reduce some of the noiseiartlyinal data set. We
explained some success stories using dimensionality tiedutecniques, especially
in the context of the Netflix prize.

In Section3, we reviewed the main classification methods: namely, séare
neighbors, decision trees, rule-based classifiers, bayesitworks, artificial neural
networks, and support vector machines. We saw that, althkN$! ( see Section
3.1) collaborative filtering is the preferred approach, alldbelassifiers can be ap-
plied in different settings. Decision trees ( see Sec8d) can be used to derive a
model based on the content of the items or to model a partipald of the system.
Decision rules ( see Sectid3) can be derived from a pre-existing decision trees,
or can also be used to introduce business or domain knowlBdgesian networks
( see SectiorB.4) are a popular approach to content-based recommendation, b
can also be used to derive a model-based collaborativerfiteystem. In a similar
way, artificial neural networks can be used to derive a mbadskd recommender.
Finally, support vector machines ( see Sec08) are gaining popularity also as a
way to infer content-based classifications or derive a bolative filtering model.

Choosing the right classifier for a recommender system iseasy and is in
many senses task and data-dependent. In the case of cali@bdiltering, some
results seem to indicate that model-based approaches clsssifiers such as the
SVM or Bayesian Networks can slightly improve performantthe standardNN
classifier. However, those results are non-conclusive and to generalize. In the
case of a content-based recommender system there is sodemewithat in some
cases Bayesian Networks will perform better than simplehous such as decision
trees. However, it is not clear that more complex non-lirdassifiers such as the
ANN or SVMs can perform better.

Therefore, the choice of the right classifier for a speciftoramending task still
has nowadays much of exploratory. A practical rule-of-thumto start with the
simplest approach and only introduce complexity if the pemfance gain obtained
justifies it. The performance gain should of course balanfferdnt dimensions
such as prediction accuracy or computational efficiency.

We reviewed clustering algorithms in SectidnClustering is usually used in
recommender systems to improve performance. A previoustearing step, either
in the user of item space, reduces the number of distancetatigns we need to
perform. However, this usually comes at the price of a loveeugacy so it should
be handled with care. As a matter of fact, improving efficiehg using a dimen-
sionality reduction technique such as SVD is probably eebetioice in the general
case. As opposed to what happens with classifiers, not so olastering algo-
rithms have been used in the context of recommender systmassimpliciy and
relative efficiency of thé&-means algorithm (see Sectidnl) make it hard to find
a practical alternative. We reviewed some of them such asaktieical Clustering
or Message-passing algorithms in Sectdo® Although these techniques have still
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not been applied for recommender systems, they offer a gingi@venue for future
research.

Finally, in Section5, we described association rules and surveyed their use in
recommender systems. Association rules offer an intgtifiamework for recom-
mending items whenever there is an explicit or implicit notbf transaction Al-
though there exist efficient algorithms for computing agsomn rules, and they
have proved more accurate than standd collaborative filtering, they are still
not a favored approach.

The choice of the right data mining technique in designing@mmender sys-
tem is a complex task that is bound by many problem-specifisttaints. However,
we hope that the short review of techniques and experienckglied in this chapter
can help the reader make a much more informed decision. 8gsick have also
uncovered areas that are open to many further improvemamisywhere there is
still much exciting and relevant research to be done in tmeicg years.

References

1. G. Adomavicius and A. Tuzhilin. Toward the next genematdd recommender systems: A
survey of the state-of-the-art and possible extensitiBEE Transactions on Knowledge and
Data Engineering17(6):734—749, 2005.

2. R. Agrawal and R. Srikant. Fast algorithms for mining a&s@on rules in large databases. In
Proceedings of the 20th International Conference on Vergé®ata Bases1994.

3. M. Anderson, M. Ball, H. Boley, S. Greene, N. Howse, D. Leanand S. McGrath. Racofi:
A rule-applying collaborative filtering system. Rroc. IEEE/WIC COLA'032003.

4. S.Banerjee and K. Ramanathan. Collaborative filteringkewed datasets. Proc. of WWW
'08, 2008.

5. C. Basu, H. Hirsh, and W. Cohen. Recommendation as clzsifn: Using social and
content-based information in recommendation.IrirProceedings of the Fifteenth National
Conference on Atrtificial Intelligen¢cg@ages 714—720. AAAI Press, 1998.

6. C. Basu, H. Hirsh, and W. Cohen. Recommendation as clzsifn: Using social and
content-based information in recommendationAKAI Workshop on Recommender Systems
1998.

7. R.Belland Y. Koren. Improved neighborhood-based collative filtering. Inin proceedings
of KDDCup '07, 2007.

8. R. M. Bell, Y. Koren, and C. Volinsky. The bellkor soluti@a the netflix prize. Technical
report, AT&T Labs Research, 2007.

9. A.Bouza, G. Reif, A. Bernstein, and H. Gall. Semtree: twgg-based decision tree algorithm
for recommender systems. limternational Semantic Web Conferen2€08.

10. A. Bozzon, G. Prandi, G. Valenzise, and M. Tagliasacchimusic recommendation sys-
tem based on semantic audio segments similarityProteeding of Internet and Multimedia
Systems and Applications - 20@®08.

11. M. Brand. Fast online svd revisions for lightweight neenender systems. I8IAM Interna-
tional Conference on Data Mining (SDIVR003.

12. J. Breese, D. Heckerman, and C. Kadie. Empirical arsabfspredictive algorithms for col-
laborative filtering. InProceedings of the Fourteenth Annual Conference on Uniceytén
Artificial Intelligence page 4352, 1998.

13. R. Burke. Hybrid web recommender systems. pages 3772008.

14. Y. Cho, J. Kim, and S. Kim. A personalized recommendetesydased on web usage mining
and decision tree inductioExpert Systems with Applicatigrn@3), 2002.



42

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.
25.
26.
27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

Xavier Amatriain, Alejandro Jaimes, Nuria Oliver, and&p M. Pujol

C. Christakou and A. Stafylopatis. A hybrid movie recoemaler system based on neural
networks. INSDA '05: Proceedings of the 5th International Conferenndrdelligent Systems
Design and Applicationgpages 500-505, 2005.

W. Cohen. Fast effective rule induction. Machine Learning: Proceedings of the 12th
International Conferengel995.

R. Collobert and S. Bengio. Svmtorch: Support vectorhimas for large-scale regression
problems.Journal of Machine Learning Research143-160, 2001.

M. Connor and J. Herlocker. Clustering items for coltalbge filtering. InSIGIR Workshop
on Recommender Syster2601.

T. Cover and P. Hart. Nearest neighbor pattern clagsifica Information Theory, IEEE
Transactions on13(1):21-27, 1967.

N. Cristianini and J. Shawe-TayloAn Introduction to Support Vector Machines and Other
Kernel-based Learning Method€ambridge University Press, March 2000.

M. Deshpande and G. Karypis. Item-based top-n recomatiemdalgorithms.ACM Trans.
Inf. Syst, 22(1):143-177, 2004.

J. W. Eaton, D. Bateman, and S. Haub&eNU Octave Manual Version. Network Theory
Ltd., 2008.

B. S. et al. Recommender systems for large-scale e-corenfgcalable neighborhood forma-
tion using clustering. IfProceedings of the Fifth International Conference on Corepand
Information Technology2002.

K. O. et al. Context-aware svm for context-dependemirmétion recommendation. Inter-
national Conference On Mobile Data Manageme2@06.

P. T. et alIntroduction to Data Mining Addison Wesley, 2005.

S. G. etal. Tv content recommender systemAARI/IAAI 2000 2000.

S. H. et al. Aimed- a personalized tv recommendatioregystin Interactive TV: a Shared
Experience2007.

T. B. etal. Atrail based internet-domain recommendstesy using artificial neural networks.
In Proceedings of the Int. Conf. on Adaptive Hypermedia andpfida Web Based Systems
2002.

B. J. Frey and D. Dueck. Clustering by passing messade®ée data pointsScience307,
2007.

N. Friedman, D. Geiger, and M. Goldszmidt. Bayesian ostvelassifiers. Mach. Learn,
29(2-3):131-163, 1997.

S. Funk. Netflix update: Try this at home, 2006.

R. Ghani and A. Fano. Building recommender systems usikigowledge base of product
semantics. Irn 2nd International Conference on Adaptive Hypermedia Addptive Web
Based System2002.

K. Goldberg, T. Roeder, D. Gupta, and C. Perkins. Eigtata constant time collaborative
filtering algorithm.Journal Information Retrieval4(2):133-151, July 2001.

G. Golub and C. Reinsch. Singular value decompositiahleast squares solutiondNu-
merische Mathematjli4(5):403-420, April 1970.

E. Gose, R. Johnsonbaugh, and S. J&stttern Recognition and Image AnalysiBrentice
Hall, 1996.

S. Guha, R. Rastogi, and K. Shim. Rock: a robust clugialgorithm for categorical at-
tributes. InProc. of the 15th Intl Conf. On Data EndlL999.

J. A. HartiganClustering Algorithms (Probability & Mathematical Statts). John Wiley &
Sons Inc.

J. L. Herlocker, J. A. Konstan, L. G. Terveen, and J. TdRievaluating collaborative filtering
recommender system8CM Trans. Inf. Syst22(1):5-53, 2004.

Z. Huang, D. Zeng, and H. Chen. A link analysis approaaletommendation under sparse
data. InProceedings of AMCIS 2002004.

A. Isaksson, M. Wallman, H. Goéransson, and M. G. Gustafs Cross-validation and boot-
strapping are unreliable in small sample classificatfeaittern Recognition Letter29:1960—
1965, 2008.



Data Mining Methods for Recommender Systems 43

41. 1. T. Jolliffe. Principal Component AnalysisSpringer, 2002.

42. H. Kang and S. Yoo. Svm and collaborative filtering-basestliction of user preference for
digital fashion recommendation systeniSICE Transactions on Inf & SysP007.

43. M. Kurucz, A. A. Benczur, and K. Csalogany. Methods fogéescale svd with missing values.
In Proceedings of KDD Cup and Workshop 20Q@07.

44, N. Lathia, S. Hailes, and L. Capra. The effect of corietatoefficients on communities of
recommenders. IBAC '08: Proceedings of the 2008 ACM symposium on Applieghabng,
pages 2000-2005, New York, NY, USA, 2008. ACM.

45. W. Lin and S. Alvarez. Efficient adaptive-support asatien rule mining for recommender
systemsData Mining and Knowledge Discovery Journél(1), 2004.

46. M. R. McLaughlin and J. L. Herlocker. A collaborative diling algorithm and evaluation
metric that accurately model the user experienceProt. of SIGIR '042004.

47. S. M. McNee, J. Riedl, and J. A. Konstan. Being accuratetignough: how accuracy metrics
have hurt recommender systems.QHIl '06: CHI '06 extended abstracts on Human factors
in computing systempages 1097-1101, New York, NY, USA, 2006. ACM Press.

48. K. Miyahara and M. J. Pazzani. Collaborative filteringhithe simple bayesian classifier. In
Pacific Rim International Conference on Artificial Intekigce 2000.

49. B. Mobasher, H. Dai, T. Luo, and M. Nakagawa. Effectivespralization based on asso-
ciation rule discovery from web usage data. Workshop On Web Information And Data
Management, WIDM ’01

50. A. Paterek. Improving regularized singular value degposition for collaborative filtering. In
Proceedings of KDD Cup and Workshop 20Q007.

51. M. J. Pazzani and D. Billsus. Learning and revising usefilps: The identification of inter-
esting web sitesMachine Learning27(3):313-331, 1997.

52. V. Pronk, W. Verhaegh, A. Proidl, and M. Tiemann. Incogtimg user control into recom-
mender systems based on naive bayesian classificatioRedB8ys '07: Proceedings of the
2007 ACM conference on Recommender systpages 73-80, 2007.

53. D. Pyle.Data Preparation for Data MiningMorgan Kaufmann, second edition edition, 1999.

54. B. K. Q. Li. Clustering approach for hybrid recommendgstem. InWeb Intelligence 03
2003.

55. J. R. Quinlan. Induction of decision treédachine Learning1(1):81-106, March 1986.

56. S. Rendle and L. Schmidt-Thieme. Online-updating ieuzed kernel matrix factorization
models for large-scale recommender systemsRénsys '08: Proceedings of the 2008 ACM
conference on Recommender Syste&2068.

57. G.W.F. L. T. K. S. Deerwester, S. T. Dumais and R. Harshnratexing by latent semantic
analysis.Journal of the American Society for Information Scigntle 1990.

58. J.F. S. Zhang, Y. Ouyang and F. Makedon. Analysis of admensional linear model under
recommendation attacks. Rroc. of SIGIR '062006.

59. B. Sarwar, G. Karypis, J. Konstan, and J. Ried|. Increéalesvd-based algorithms for highly
scalable recommender systems5th International Conference on Computer and Information
Technology (ICCIT,)2002.

60. B. M. Sarwar, G. Karypis, J. A. Konstan, and J. T. Riedl. piqation of dimensionality
reduction in recommender systemsa case studfCiM WebKDD WorkshqR000.

61. B. Smyth, K. McCarthy, J. Reilly, D. O'Sullivan, L. McGQiy and D. Wilson. Case studies
in association rule mining for recommender system®rbit. of International Conference on
Artificial Intelligence (ICAI '05) 2005.

62. E. Spertus, M. Sahami, and O. Buyukkokten. Evaluatinglaiity measures: A large-scale
study in the orkut social network. IRroceedings of the 2005 International Conference on
Knowledge Discovery and Data Mining (KDD-Q2005.

63. L. H. Ungar and D. P. Foster. Clustering methods for boltative filtering. InProceedings
of the Workshop on Recommendation Syst@@30.

64. A.R.M.W. L. Martinez.Exploratory Data AnalysisChapman & Hall, 2004.

65. 1. H. Witten and E. FrankData Mining: Practical Machine Learning Tools and Technégu
Morgan Kaufmann, second edition edition, 2005.



44

66.

67.

68.

69.

70.

71.

72.

73.

74.

Xavier Amatriain, Alejandro Jaimes, Nuria Oliver, and&p M. Pujol

I. H. Witten and E. FrankData Mining: Practical machine learning tools and technégu
Morgan Kaufmann, 2nd edition edition, 2005.

M. Wu. Collaborative filtering via ensembles of matrigtfarizations. IProceedings of KDD
Cup and Workshop 2002007.

Z. Xia, Y. Dong, and G. Xing. Support vector machines fataborative filtering. IPACM-SE
44: Proceedings of the 44th annual Southeast regional cenée pages 169-174, New York,
NY, USA, 2006. ACM.

J. Xu and K. Araki. A svm-based personal recommendatystem for tv programs. In
Multi-Media Modelling Conference Proceedings

G.-R. Xue, C. Lin, Q. Yang, W. Xi, H.-J. Zeng, Y. Yu, and Zh&). Scalable collaborative
filtering using cluster-based smoothing.Rroceedings of the 2005 SIGIR005.

K. Yu, V. Tresp, and S. Yu. A nonparametric hierarchiaaldsian framework for information
filtering. In SIGIR '04 2004.

Y. Zhang and J. Koren. Efficient bayesian hierarchicaf msodeling for recommendation
system. InSIGIR 07 2007.

C.-N. Ziegler, S. M. McNee, J. A. Konstan, and G. Lausemprbving recommendation lists
through topic diversification. IRroc. of WWW '052005.

J. Zuradalntroduction to artificial neural system&Vest Publishing Co., St. Paul, MN, USA,
1992.



	Data Mining Methods for Recommender Systems
	Xavier Amatriain, Alejandro Jaimes, Nuria Oliver, and Josep M. Pujol
	1 Introduction
	2 Data Preprocessing
	2.1 Similarity Measures
	2.2 Sampling
	2.3 Reducing Dimensionality

	3 Classification
	3.1 Nearest Neighbors
	3.2 Decision Trees
	3.3 Ruled-based Classifiers
	3.4 Bayesian Classifiers
	3.5 Artificial Neural Networks
	3.6 Support Vector Machines
	3.7 Ensembles of Classifiers
	3.8 Evaluating Classifiers

	4 Cluster Analysis
	4.1 k-Means
	4.2 Alternatives to k-means
	4.3 Cluster Analysis in Recommender Systems

	5 Association Analysis
	5.1 Frequent Itemset generation and the Apriori Principle
	5.2 Rule Generation
	5.3 Association Rules in Recommender Systems

	6 Conclusions
	References



